Why is neuron modeling of particular philosophical interest?
Main Article Content
Abstract
This review article discusses Andrzej Bielecki’s book Models of Neurons and Perceptrons: Selected Problems and Challenges, as published by Springer International Publishing. This work exemplifies “philosophy in science” by adopting a broad, multidisciplinary perspective for the issues related to the simulation of neurons and neural networks, and the author has addressed many of the important philosophical assumptions that are entangled in this area of modeling. Bielecki also raises several important methodological issues about modeling. This book is recommended for any philosophers who wish to learn more about the current state of neural modeling and find inspiration for a deeper philosophical reflection on the subject.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bielecki, A., 2016. Cybernetyczna analiza zjawiska życia. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (61), pp.133–164. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/361> [visited on 27 January 2020].
Bielecki, A., 2018. Epistemologiczne problemy w biologii subkomórkowej: obserwacje, modele matematyczne i symulacje komputerowe. Semina Scientiarum [Online], 16, pp.10–23. https://doi.org/10.15633/ss.2482.
Bielecki, A., 2019. Models of Neurons and Perceptrons: Selected Problems and Challenges [Online]. Vol. 770, Studies in Computational Intelligence. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-90140-4.
Dodig-Crnkovic, G., 2022. In search of common, information-processing, agency-based framework for anthropogenic, biogenic, and abiotic cognition and intelligence. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (73), pp.7–9.
Flasiński, M., 1997. “Every Man in His Notions” or Alchemists’ Discussion on Artificial Intelligence. Foundations of Science [Online], 2(1), pp.107–121. https://doi.org/10.1023/A:1009687513096.
Flasiński, M., 2016. Introduction to Artificial Intelligence [Online]. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-40022-8.
Heller, M., 2019. How is philosophy in science possible? Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (66), pp.231–249. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/482> [visited on 6 October 2021].
Kycia, R., 2021. Information and brain. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (70), pp.45–72. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/514> [visited on 6 December 2022].
Polak, P., 2019. Philosophy in science: A name with a long intellectual tradition. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (66), pp.251–270. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/472> [visited on 6 October 2021].
Tadeusiewicz, R., 1994. Problemy biocybernetyki. Wyd. 2. Warszawa: Wydawnictwo Naukowe PWN.
Tadeusiewicz, R., ed., 2009. Neurocybernetyka teoretyczna. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.
Weisberg, J., 2010. Bootstrapping in General. Philosophy and Phenomenological Research [Online], 81(3), pp.525–548. Available at: <https://www.jstor.org/stable/41057492> [visited on 6 December 2022].