A conventionalist account of distinctively mathematical explanation

Main Article Content

Mark Povich
https://orcid.org/0000-0001-8124-4311

Abstract

Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic items (ontic objects, properties, structures, etc.) and the explanatory relation between them as an ontic relation (e.g., Pincock, 2015; Povich, 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it is ontic, the conventionalist account seems to avoid a convincing objection to other ontic accounts (Kuorikoski, 2021).

Article Details

How to Cite
Povich, M. (2024). A conventionalist account of distinctively mathematical explanation. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (74), 171–223. https://doi.org/10.59203/zfn.74.648
Section
Articles

References

Almgren, F.J. and Taylor, J.E., 1976. The geometry of soap films and soap bubbles. Scientific American [Online], 235(1), pp.82–93. https://doi.org/10.1038/scientificamerican0776-82.

Awodey, S. and Carus, A.W., 2004. How Carnap could have replied to Gödel. In: S. Awodey and C. Klein, eds. Carnap Brought Home: The View from Jena. LaSalle, IL: Open Court, pp.203–223.

Baker, A., 2005. Are there genuine mathematical explanations of physical phenomena? Mind [Online], 114(454), pp.223–238. Available at: <https://www.jstor.org/stable/3489104> [visited on 12 January 2024].

Baker, A., 2009. Mathematical explanation in science. The British Journal for the Philosophy of Science [Online], 60(3), pp.611–633. https://doi.org/10.1093/bjps/axp025.

Baker, G.P. and Hacker, P.M.S., 2009. Wittgenstein: Rules, Grammar and Necessity: Essays and Exegesis of §§185–242 [Online]. 1st ed. John Wiley & Sons. https://doi.org/10.1002/9781444315691.

Balaguer, M., 2017. Mathematical pluralism and platonism. Journal of Indian Council of Philosophical Research [Online], 34(2), pp.379–398. https://doi.org/10.1007/s40961-016-0084-4.

Bangu, S., 2006. Steiner on the applicability of mathematics and naturalism. Philosophia Mathematica [Online], 14(1), pp.26–43. https://doi.org/10.1093/philmat/nkj002.

Bangu, S., 2008. Inference to the best explanation and mathematical realism. Synthese [Online], 160(1), pp.13–20. https://doi.org/10.1007/s11229-006-9070-8.

Bangu, S., 2018. Later Wittgenstein and the Genealogy of Mathematical Necessity. In: K.M. Cahill and T. Raleigh, eds. Wittgenstein and Naturalism [Online]. 1st ed., Wittgenstein’s thought and legacy. New York, NY: Routledge, Taylor & Francis Group, pp.151–173. [visited on 13 January 2024].

Baron, S., 2016. Explaining mathematical explanation. The Philosophical Quarterly [Online], 66(264), pp.458–480. https://doi.org/10.1093/pq/pqv123.

Baron, S., 2020. Counterfactual scheming. Mind [Online], 129(514), pp.535–562. https://doi.org/10.1093/mind/fzz008.

Baron, S., Colyvan, M. and Ripley, D., 2017. How mathematics can make a difference. Philosopher’s Imprint [Online], 17(3), pp.1–29. Available at: <http://hdl.handle.net/2027/spo.3521354.0017.003> [visited on 13 January 2024].

Beall, J.C. and Restall, G., 2006. Logical Pluralism. Oxford; New York: Clarendon Press; Oxford University Press.

Benacerraf, P., 1973. Mathematical truth. The Journal of Philosophy [Online], 70(19), pp.661–679. https://doi.org/10.2307/2025075.

Bennett, J., 2003. A Philosophical Guide to Conditionals. 1st ed. Oxford: Oxford University Press.

Berto, F., 2009. The Gödel paradox and Wittgenstein’s reasons. Philosophia Mathematica [Online], 17(2), pp.208–219. https://doi.org/10.1093/philmat/nkp001.

Blackburn, S., 1993. Essays in Quasi-Realism. New York: Oxford University Press.

Blackburn, S., 2005. Quasi-Realism no Fictionalism. In: M.E. Kalderon, ed. Fictionalism In Metaphysics [Online]. Oxford University PressOxford, pp.322–338. https://doi.org/10.1093/oso/9780199282180.003.0012.

Boghossian, P.A., 1996. Analyticity. In: B. Hale and C. Wright, eds. A Companion to the Philosophy of Language. Oxford: Blackwell, pp.331–368.

Brandom, R.B., 2008. Between Saying and Doing [Online]. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199542871.001.0001.

Brogaard, B. and Salerno, J., 2013. Remarks on counterpossibles. Synthese [Online], 190(4), pp.639–660. https://doi.org/10.1007/s11229-012-0196-6.

Bromberger, S., 1966. Why-Questions. In: R.G. Colodny, ed. Mind and Cosmos: Essays in Contemporary Science and Philosophy. Pittsburgh: University of Pittsburgh Press, pp.86–111.

Bueno, O. and French, S., 2018. Applying Mathematics: Immersion, Inference, Interpretation. Oxford: Oxford University Press.

Carnap, R., 1950. Empiricism, semantics, and ontology. Revue Internationale de Philosophie [Online], 4(11), pp.20–40. Available at: <https://www.jstor.org/stable/23932367> [visited on 15 January 2024].

Chalmers, D.J., 2004. Epistemic two-dimensional semantics. Philosophical Studies [Online], 118(1), pp.153–226. https://doi.org/10.1023/B:PHIL.0000019546.17135.e0.

Clark, B., 2017. Wittgenstein, Mathematics and World [Online]. Cham: Palgrave Macmillan. https://doi.org/10.1007/978-3-319-63991-8.

Colyvan, M., 1998. Can the eleatic principle be justified? Canadian Journal of Philosophy [Online], 28(3), pp.313–335. https://doi.org/10.1080/00455091.1998.10715975.

Colyvan, M., 2011. Fictionalism in the Philosophy of Mathematics. In: E.J. Craig, ed. Routledge Encyclopedia of Philosophy. New York.

Craver, C.F., 2007. Explaining the Brain. Oxford University Press, USA, p.272.

Craver, C.F., 2014. The Ontic Account of Scientific Explanation. In: M.I. Kaiser, O.R. Scholz, D. Plenge and A. Hüttemann, eds. Explanation in the Special Sciences: The Case of Biology and History [Online]. Vol. 367, Synthese Library. Dordrecht: Springer Netherlands, pp.27–52. https://doi.org/10.1007/978-94-007-7563-3_2.

Craver, C.F., Glennan, S. and Povich, M., 2021. Constitutive relevance & mutual manipulability revisited. Synthese [Online], 199(3), pp.8807–8828. https://doi.org/10.1007/s11229-021-03183-8.

Craver, C.F. and Povich, M., 2017. The directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science Part A [Online], 63, pp.31–38. https://doi.org/10.1016/j.shpsa.2017.04.005.

Creath, R., 1980. Benacerraf and mathematical truth. Philosophical Studies [Online], 37(4), pp.335–340. https://doi.org/10.1007/BF00354902.

Davies, E.B., 2005. A defence of mathematical pluralism. Philosophia Mathematica [Online], 13(3), pp.252–276. https://doi.org/10.1093/philmat/nki017.

Donaldson, T., 2021. Analyticity. In: M.J. Raven, ed. The Routledge Handbook of Metaphysical Grounding, Routledge handbooks in philosophy. New York; London: Routledge, pp.288–299.

Dreier, J., 2004. Meta-ethics and the problem of creeping minimalism. Philosophical Perspectives [Online], 18(1), pp.23–44. https://doi.org/10.1111/j.1520-8583.2004.00019.x.

Einheuser, I., 2011. Toward a conceptualist solution of the grounding problem. Noűs [Online], 45(2), pp.300–314. https://doi.org/10.1111/j.1468-0068.2010.00765.x.

Floyd, J. and Putnam, H., 2000. A note on Wittgenstein’s “Notorious Paragraph” about the Godel Theorem. The Journal of Philosophy [Online], 97(11), p.624. https://doi.org/10.2307/2678455.

Goodman, N., 1947. The problem of counterfactual conditionals. The Journal of Philosophy [Online], 44(5), p.113. https://doi.org/10.2307/2019988.

Hale, B. and Wright, C., 2001. The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics [Online]. Oxford : Oxford ; New York: Clarendon Press ; Oxford University Press. https://doi.org/10.1093/0198236395.001.0001.

Kant, I., 1781/1787. Critique of pure reason. Ed. and trans. by P. Guyer and A.W. Wood. 2018 edition. Cambridge; New York: Cambridge University Press.

Kim, J., 2011. Philosophy of Mind. 3rd ed. Boulder, CO: Westview Press.

Kocurek, A.W., 2021. Counterpossibles. Philosophy Compass [Online], 16(11), e12787. https://doi.org/10.1111/phc3.12787.

Kocurek, A.W., Jerzak, E. and Rudolph, R.E., 2020. Against conventional wisdom. Philosopher’s Imprint [Online], 20(22). Available at: <http://hdl.handle.net/2027/spo.3521354.0020.022> [visited on 15 January 2024].

Kocurek, A.W. and Jerzak, E.J., 2021. Counterlogicals as counterconventionals. Journal of Philosophical Logic [Online], 50(4), pp.673–704. https://doi.org/10.1007/s10992-020-09581-6.

Kripke, S.A., 1980. Naming and Necessity. Cambridge, Mass: Harvard Univ. Press.

Kuorikoski, J., 2021. There are no mathematical explanations. Philosophy of Science [Online], 88(2), pp.189–212. https://doi.org/10.1086/711479.

Lampert, T., 2018. Wittgenstein and Gödel: An attempt to make ‘Wittgenstein’s objection’ reasonable. Philosophia Mathematica [Online], 26(3), pp.324–345. https://doi.org/10.1093/philmat/nkx017.

Lange, M., 2013. What makes a scientific explanation distinctively mathematical? The British Journal for the Philosophy of Science [Online], 64(3), pp.485–511. https://doi.org/10.1093/bjps/axs012.

Lange, M., 2016. Because Without Cause: Non-Causal Explanations in Science and Mathematics, Oxford Studies in Philosophy of Science. Oxford; New York: Oxford University Press.

Lange, M., 2018. A reply to Craver and Povich on the directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science Part A [Online], 67, pp.85–88. https://doi.org/10.1016/j.shpsa.2018.01.002.

Lange, M., 2021. What could mathematics be for it to function in distinctively mathematical scientific explanations? Studies in History and Philosophy of Science Part A [Online], 87, pp.44–53. https://doi.org/10.1016/j.shpsa.2021.02.002.

Lange, M., 2022. In defense of really statistical explanations. Synthese [Online], 200(5), p.388. https://doi.org/10.1007/s11229-022-03868-8.

Lewis, D., 1973. Counterfactuals. 1st ed. Blakwell.

Locke, T.D., 2021. Counterpossibles for modal normativists. Synthese [Online], 198(2), pp.1235–1257. https://doi.org/10.1007/s11229-019-02103-1.

Lyon, A., 2012. Mathematical explanations of empirical facts, and mathematical realism. Australasian Journal of Philosophy [Online], 90(3), pp.559–578. https://doi.org/10.1080/00048402.2011.596216.

Lyon, A. and Colyvan, M., 2007. The explanatory power of phase spaces. Philosophia Mathematica [Online], 16(2), pp.227–243. https://doi.org/10.1093/philmat/nkm025.

Maddy, P., 1990. Realism in Mathematics. Oxford; New York: Clarendon Press; Oxford University Prress.

Mancosu, P., 2008. Mathematical explanation: Why it matters. In: P. Mancosu, ed. The Philosophy of Mathematical Practice [Online]. Oxford University Press, pp.134–150. https://doi.org/10.1093/acprof:oso/9780199296453.003.0006.

Melia, J., 2000. Weaseling away the indispensability argument. Mind [Online], 109(435), pp.455–480. https://doi.org/10.1093/mind/109.435.455.

Moore, A., 1999. More on ‘The Philosophical Significance of Gödel’s Theorem’. Grazer Philosophische Studien [Online], 55(1), pp.103–126. https://doi.org/10.1163/18756735-05501006.

Pincock, C., 2011. Mathematics and Scientific Representation. Oxford; New York: Oxford University Press.

Pincock, C., 2015. Abstract explanations in science. The British Journal for the Philosophy of Science [Online], 66(4), pp.857–882. https://doi.org/10.1093/bjps/axu016.

Povich, M., 2018. Minimal models and the generalized ontic conception of scientific explanation. The British Journal for the Philosophy of Science [Online], 69(1), pp.117–137. https://doi.org/10.1093/bjps/axw019.

Povich, M., 2020. Modality and constitution in distinctively mathematical explanations. European Journal for Philosophy of Science [Online], 10(3), pp.1–10. https://doi.org/10.1007/s13194-020-00292-y.

Povich, M., 2021. The narrow ontic counterfactual account of distinctively mathematical explanation. The British Journal for the Philosophy of Science [Online], 72(2), pp.511–543. https://doi.org/10.1093/bjps/axz008.

Povich, M., 2024. Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation. Oxford University Press.

Price, H., 2011. Naturalism Without Mirrors. Oxford, New York: Oxford University Press.

Priest, G., 2013. Mathematical pluralism. Logic Journal of the IGPL [Online], 21(1), pp.4–13. https://doi.org/10.1093/jigpal/jzs018.

Priest, G., 2021. A note on mathematical pluralism and logical pluralism. Synthese [Online], 198(20), pp.4937–4946. https://doi.org/10.1007/s11229-019-02292-9.

Reutlinger, A., 2016. Is there a monist theory of causal and noncausal explanations? The counterfactual theory of scientific explanation. Philosophy of Science [Online], 83(5), pp.733–745. https://doi.org/10.1086/687859.

Roski, S., 2021. In defence of explanatory realism. Synthese [Online], 199(5), pp.14121–14141. https://doi.org/10.1007/s11229-021-03413-z.

Saatsi, J., 2011. The enhanced indispensability argument: representational versus explanatory role of mathematics in science. The British Journal for the Philosophy of Science [Online], 62(1), pp.143–154. https://doi.org/10.1093/bjps/axq029.

Saatsi, J., 2012. Mathematics and program explanations. Australasian Journal of Philosophy [Online], 90(3), pp.579–584. https://doi.org/10.1080/00048402.2012.665374.

Saatsi, J., 2016. On the ‘indispensable explanatory role’ of mathematics. Mind [Online], 125(500), pp.1045–1070. https://doi.org/10.1093/mind/fzv175.

Salmon, W.C., 1984. Scientific explanation: Three basic conceptions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association [Online], (2), pp.293–305. https://doi.org/10.1086/psaprocbienmeetp.1984.2.192510.

Salmon, W.C., 1989. Four decades of scientific explanation. In: P. Kitcher and W.C. Salmon, eds. Scientific Explanation [Online], Minnesota studies in the philosophy of science, 13. Minneapolis: University of Minnesota Press, pp.3–219. Available at: <http://conservancy.umn.edu/handle/11299/185700> [visited on 4 October 2023].

Schiffer, S., 2003. The Things We Mean. Oxford and New York: Clarendon Press.

Sidelle, A., 1989. Necessity, Essence, and Individuation: A Defense of Conventionalism [Online]. Ithaca, NY: Cornell University Press. https://doi.org/10.7591/9781501746260.

Sidelle, A., 2009. Conventionalism and the contingency of conventions. Noűs [Online], 43(2), pp.224–241. https://doi.org/10.1111/j.1468-0068.2009.00704.x.

Simpson, M., 2020. Creeping minimalism and subject matter. Canadian Journal of Philosophy [Online], 50(6), pp.750–766. https://doi.org/10.1017/can.2020.20.

Stalnaker, R., 1978. Assertion. In: P. Cole, ed. Syntax and Semantics: Pragmatics. Vol. 9. New York: Academic Press, pp.315–332.

Stalnaker, R., 2001. On considering a possible world as actual: Robert Stalnaker. Aristotelian Society Supplementary Volume [Online], 75(1), pp.141–156. https://doi.org/10.1111/1467-8349.00083.

Steiner, M., 1978. Mathematics, explanation, and scientific knowledge. Noűs [Online], 12(1), pp.17–28. https://doi.org/10.2307/2214652.

Steiner, M., 1996. Wittgenstein: ‘Mathematics, regularities, rules. In: A. Morton and S.P. Stich, eds. Benacerraf and His Critics, Philosophers and their critics, 8. Cambridge, MA: Blackwell Publishers, pp.190–212.

Steiner, M., 1998. The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA: Harvard Univ. Press.

Steiner, M., 2009. Empirical regularities in Wittgenstein’s philosophy of mathematics. Philosophia Mathematica [Online], 17(1), pp.1–34. https://doi.org/10.1093/philmat/nkn016.

Thomasson, A.L., 2007a. Modal normativism and the methods of metaphysics. Philosophical Topics [Online], 35(1/2), pp.135–160. https://doi.org/10.5840/philtopics2007351/27.

Thomasson, A.L., 2007b. Ordinary Objects. Oxford; New York: Oxford University Press.

Thomasson, A.L., 2014. Ontology Made Easy. Oxford: Oxford University Press.

Thomasson, A.L., 2020. Norms and Necessity. Oxford: Oxford University Press.

Thomasson, A.L., 2021. How can we come to know metaphysical modal truths? Synthese [Online], 198(8), pp.2077–2106. https://doi.org/10.1007/s11229-018-1841-5.

Topey, B., 2019. Linguistic convention and worldly fact: Prospects for a naturalist theory of the a priori. Philosophical Studies [Online], 176(7), pp.1725–1752. https://doi.org/10.1007/s11098-018-1088-5.

Waismann, F., 1986. The Nature of Mathematics: Wittgenstein’s Standpoint. In: S. Shanker, ed. Ludwig Wittgenstein: Critical Assessments, Vol. III. London: Croom Helm, pp.60–67.

Warren, J., 2020. Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism. Oxford; New York: Oxford University Press.

Warren, J., 2022a. Inferentialism, conventionalism, and a posteriori necessity. The Journal of Philosophy [Online], 119(10), pp.517–541. https://doi.org/10.5840/jphil20221191034.

Warren, J., 2022b. The A Priori Without Magic [Online]. 1st ed. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009030472.

Wigner, E.P., 1960. The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Communications on Pure and Applied Mathematics [Online], 13(1), pp.1–14. https://doi.org/10.1002/cpa.3160130102.

Wittgenstein, L., 1976. Wittgenstein’s Lectures on the Foundations of Mathematics Cambridge, 1939. Ed. by C. Diamond. Ithaca, NY: Cornell University Press.

Wittgenstein, L., 1978. Remarks on the Foundations of Mathematics. Ed. by G. von Wright, R. Rhees and G. Anscombe (G. Anscombe, Trans.). Oxford: Blackwell.

Wittgenstein, L., 2013. Tractatus Logico-Philosophicus (D. Pears and B. McGuinness, Trans.), Routledge great minds. London: Routledge.

Woodward, J., 2003. Making Things Happen: A Theory of Causal Explanation, Oxford Studies in Philosophy of Science. Oxford, New York: Oxford University Press.

Wright, C., 1985. In Defence of the Conventional Wisdom. In: I. Hacking, ed. Exercises in Analysis. Cambridge: Cambridge University Press, pp.171–197