Realism, irrationality, and spinor spaces
Main Article Content
Abstract
Mathematics, as Eugene Wigner noted, is unreasonably effective in physics. The argument of this paper is that the disproportionate attention that philosophers have paid to discrete structures such as the natural numbers, for which a nominalist construction may be possible, has deprived us of the best argument for Platonism, which lies in continuous structures—in fields and their derived algebras, such as Clifford algebras. The argument that Wigner was making is best made with respect to such structures—in a loose sense, with respect to geometry rather than arithmetic. The purpose of the present paper is to make this connection between mathematical realism and geometrical entities. It thus constitutes an argument against formalism, for which mathematics is merely a game with humanly set rules; and nominalism, in which whatever mathematics is used is eliminable in the final analysis, by often insufficiently specified means. The hope is that light may be cast on the stubborn mysteries of the nature of quantum mechanics and its mathematical formulation, with particular reference to spinor representations—as they have been developed by Andrej Trautman. Thus, according to our argument, quantum mechanics (QM) may appear more natural, as we have better reasons to take spinor structures as irreducibly real, a view consonant with the work of Trautman and Penrose in particular.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Altmann, S.L., 1989. Hamilton, Rodrigues, and the quaternion scandal. Mathematics Magazine, 62(5), pp.291–308. https://doi.org/10.1080/0025570X.1989.11977459.
Azzouni, J., 2006. Deflating Existential Consequence: A Case for Nominalism. Oxford University Press.
Azzouni, J., 2010. Talking About Nothing: Numbers, Hallucinations, and Fictions. Oxford; New York: Oxford University Press.
Bär, C., Gauduchon, P. and Moroianu, A., 2005. Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift, 249(3), pp.545–580. https://doi.org/10.1007/s00209-004-0718-0.
Batterman, R.W., 2010. On the explanatory role of mathematics in empirical science. The British Journal for the Philosophy of Science, 61(1), pp.1–25. https://doi.org/10.1093/bjps/axp018.
Bourguignon, J.-P. et al., 2015. A Spinorial Approach to Riemannian and Conformal Geometry, EMS Monographs in Mathematics. EMS Press. https://doi.org/10.4171/136.
Brauer, R. and Weyl, H., 1935. Spinors in n dimensions. American Journal of Mathematics, 57(2), pp.425–449. https://doi.org/10.2307/2371218.
Button, T. and Walsh, S., 2018. Philosophy and Model Theory. Oxford University PressOxford. https://doi.org/10.1093/oso/9780198790396.001.0001.
Cartan, E., 1913. Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. Bulletin de la Société Mathématique de France, 41, pp.53–96. Available at: <https://eudml.org/doc/86329> [visited on 12 January 2024].
Cartan, E., 1966. The Theory of Spinors. Cambridge, MA: MIT Press.
Chevalley, C., 1997. The Algebraic Theory of Spinors and Clifford Algebras. Ed. by P. Cartier and C. Chevalley, Collected works / Claude Chevalley, vol. 2. Berlin [etc.]: Springer.
Daly, C. and Langford, S., 2009. Mathematical explanation and indispensability arguments. The Philosophical Quarterly, 59(237), pp.641–658. https://doi.org/10.1111/j.1467-9213.2008.601.x.
Dedekind, R., 1888. Was sind und was sollen die Zahlen? Braunschwieg: Friedrich Vieweg & Sohn. Available at: <http://www.digibib.tu-bs.de/?docid=00024927> [visited on 30 October 2020].
Donaldson, S.K. and Sullivan, D.P., 1989. Quasiconformal 4-manifolds. Acta Mathematica, 163, pp.181–252. https://doi.org/10.1007/BF02392736.
Estermann, T., 1975. The irrationality of√2. The Mathematical Gazette, 59(408), pp.110–110. https://doi.org/10.2307/3616647.
Euclid, 1956. The Thirteen Books of Euclid’s Elements (Book X-XIII), vol. 3 (T.L. Heath, Trans.). New York: Dover Publications.
Farmelo, G., 2009. The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom. New York: Basic Books.
Field, H.H., 1980. Science Without Numbers: A Defence of Nominalism, Library of Philosophy and Logic. Oxford: Basil Blackwell.
Fowler, D.C., 1999. The Mathematics of Plato’s Academy: A New Reconstruction. 2nd ed. Oxford: Clarendon press.
Hahn, L.-s., 1994. Complex Numbers and Geometry, Spectrum Series. Washington, DC: Mathematical Association of America.
Heathcote, A., 2014. On the exhaustion of mathematical entities by structures. Axiomathes, 24(2), pp.167–180. https://doi.org/10.1007/s10516-013-9223-6.
Heathcote, A., 2021. Multiplicity and indiscernibility. Synthese, 198(9), pp.8779–8808. https://doi.org/10.1007/s11229-020-02600-8.
Kähler, E., 2003. Il Regno delle Idee. In: R. Berndt and O. Riemenschneider, eds. Mathematische Werke / Mathematical Works. Berlin: Walter de Gruyter, pp.932–938.
Kalligas, P., Mpala, C., Baziotopoulou-Valavani, E. and KarasmanŻes, B., eds., 2020. Plato’s Academy: Its Workings and Its History. Cambridge: Cambridge University Press.
Kaplansky, I., 2003. Linear Algebra and Geometry: A Second Course. Mineola, N.Y: Dover Publications.
Knorr, W.R., 1975. The Evolution of the Euclidean Elements: A Study of the Theory of Incommensurable Magnitudes and Its Significance for Early Greek Geometry, Synthese Historical Library, vol. 15. Dordrecht: D. Reidel.
Kocik, J., 2007. Clifford algebras and Euclid’s parametrization of Pythagorean triples. Advances in Applied Clifford Algebras, 17(1), pp.71–93. https://doi.org/10.1007/s00006-006-0019-2.
La Nave, F. and Mazur, B., 2002. Reading Bombelli. The Mathematical Intelligencer, 24(1), pp.12–21. https://doi.org/10.1007/BF03025306.
Leibniz, G.W., 1989. Dialogue on Human Freedom and the Origin of Evil (1695). Philosophical Essays (R. Ariew and D. Garber, Trans.). Indianapolis, Ind.: Hackett Publ, pp.111–116.
Lounesto, P., 2001. Clifford Algebras and Spinors. 2nd ed, London Mathematical Society Lecture Note Series, 286. Cambridge, UK: Cambridge University Press.
Malament, D., 1982. Science without numbers by Hartry H. Field. Journal of Philosophy, 79(9), pp.523–534. https://doi.org/10.5840/jphil198279913.
Mazur, B., 2004. Imagining Numbers: (particularly the Square Root of Minus Fifteen). 1st ed. New York: Picador.
Melia, J., 2000. Weaseling away the indispensability argument. Mind, 109(435), pp.455–480. https://doi.org/10.1093/mind/109.435.455.
Newstead, A. and Franklin, J., 2012. Indispensability Without Platonism. In: A. Bird, B. Ellis and H. Sankey, eds. Properties, Powers, and Structures: Issues in the Metaphysics of Realism. London: Routledge, pp.81–97.
Owens, J., 1982. Faith, ideas, illumination, and experience. The Cambridge History of Later Medieval Philosophy. Cambridge: Cambrdige University Press, pp.440–459. Available at: <http://opac.regesta-imperii.de/id/252620>.
Payne, W.T., 1952. Elementary spinor theory. American Journal of Physics, 20(5), pp.253–262. https://doi.org/10.1119/1.1933190.
Penrose, R., 2000. Mathematical Physics in the 20th and 21st Centuries. In: V.I. Arnol’d, M. Atiyah, P. Lax and B. Mazur, eds. Mathematics: Frontiers and Perspectives. Providence: American Mathematical Society, pp.219–234.
Penrose, R., 2004. The Road to Reality: A Complete Guide to the Laws of the Universe. 1st american ed. Alfred A. Knopf Inc.
Penrose, R. and Rindler, W., 1987. Spinors and Space-Time. Vol. 1: Two-Spinor Calculus and Relativistic Fields, Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press.
Penrose, R. and Rindler, W., 1988. Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry, Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press.
Renou, M.-O. et al., 2021. Quantum theory based on real numbers can be experimentally falsified. Nature, 600(7890), pp.625–629. https://doi.org/10.1038/s41586-021-04160-4.
Resnik, M.D., 1983. Hartry H. Field: Science without numbers. Noűs, 17(3), p.514. https://doi.org/10.2307/2215268.
Resnik, M.D., 1985. How nominalist is Hartry Field’s nominalism? Philosophical Studies, 47(2), pp.163–181. https://doi.org/10.1007/BF00354144.
Shing-Tung, Y., 2000. Review of Geometry and Analysis. In: V.I. Arnol’d, M. Atiyah, P. Lax and B. Mazur, eds. Mathematics: Frontiers and Perspectives. Providence: American Mathematical Society, pp.353–401.
Shiu, P., 1999. More on Estermann and Pythagoras. The Mathematical Gazette, 83(497), pp.267–269. https://doi.org/10.2307/3619055.
Siu, M.-K., 1998. Estermann and Pythagoras. The Mathematical Gazette, 82(493), pp.92–93. https://doi.org/10.2307/3620162.
Steiner, M., 1998. The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA: Harvard Univ. Press.
Trautman, A., 1998. Pythagorean Spinors and Penrose Twistors. In: S.A. Huggett et al., eds. The Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Oxford: Oxford University Press, pp.411–419. https://doi.org/10.1093/oso/9780198500599.003.0031.
Van Heijenoort, J., 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Cambridge: Harvard University Press. Available at: <http://archive.org/details/fromfregetogodel0000vanh> [visited on 23 January 2024].
Veblen, O., 1933. Geometry of four-component spinors. Proceedings of the National Academy of Sciences, 19(5), pp.503–517. https://doi.org/10.1073/pnas.19.5.503.
Veblen, O., 1934. Spinors. Science, 80(2080), pp.415–419. https://doi.org/10.1126/science.80.2080.415.
Waterhouse, W.C., 2012. Square root as a homomorphism. The American Mathematical Monthly, 119(3), pp.235–239. https://doi.org/10.4169/amer.math.monthly.119.03.235.
Weyl, H., 1931. Theory of Groups and Quantum Mechanics. London: Methuen.
Weyl, H., 1939. The Classical Groups; Their Invariants and Representations, Princeton mathematical series. Princeton, N.J.; London: Princeton University Press; H. Milford, Oxford University