In search of common, information-processing, agency-based framework for anthropogenic, biogenic, and abiotic cognition and intelligence
Main Article Content
Abstract
Learning from contemporary natural, formal, and social sciences, especially from current biology, as well as from humanities, particularly contemporary philosophy of nature, requires updates of our old definitions of cognition and intelligence. The result of current insights into basal cognition of single cells and evolution of multicellular cognitive systems within the framework of extended evolutionary synthesis (EES) helps us better to understand mechanisms of cognition and intelligence as they appear in nature. New understanding of information and processes of physical (morphological) computation contribute to novel possibilities that can be used to inspire the development of abiotic cognitive systems (cognitive robotics), cognitive computing and artificial intelligence.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abramsky, S., 2008. Information, Processes and Games. In: J. Benthem van and P. Adriaans, eds. Philosophy of Information. Amsterdam, The Netherlands: North Holland, pp.483–549.
Ball, P., 2022. The Book of Minds: How to Understand Ourselves and Other Beings, from Animals to AI to Aliens. Chicago: University of Chicago Press.
Baluška, F. and Levin, M., 2016. On having no head: cognition throughout biological systems. Frontiers in Psychology, 7, p.902.
Ben-Jacob, E., 1998. Bacterial wisdom, Gödels theorem and creative genomic webs. Physica A, 248, pp.57–76.
Ben-Jacob, E., 2003. Bacterial Self-Organization: Co-Enhancement of Complexification and Adaptability in a Dynamic Environment. Phil. Trans. R. Soc. Lond. A, pp.315–322.
Ben-Jacob, E., 2008. Social behavior of bacteria: from physics to complex organization. The European Physical Journal B, 65(3), pp.315–322.
Ben-Jacob, E., 2009. Learning from Bacteria about Natural Information Processing. Annals of the New York Academy of Sciences, 1178, pp.78–90.
Ben-Jacob, E., Becker, I. and Shapira, Y., 2004. Bacteria Linguistic Communication and Social Intelligence. Trends in Microbiology, 12(8), pp.366–372.
Ben-Jacob, E., Shapira, Y. and Tauber, A., 2006. Seeking the Foundations of Cognition in Bacteria. Physica A, 359, pp.495–524.
Ben-Jacob, E., Shapira, Y. and Tauber, A., 2011. Smart Bacteria. In: L. Margulis, C. Asikainen and W. Krumbein, eds. Chimera and Consciousness. Evolution of the Sensory Self. Cambridge; Boston: MIT Press.
Biotechnology-Accegen, 2022. Nervous System Primary Cells [Online]. Available at: <https://www.accegen.com/category/nervous-system-primary-cells/> [visited on 10 January 2023].
Chaitin, G., 2007. Epistemology as Information Theory: From Leibniz to ω. In: G. Dodig Crnkovic, ed. Computation, Information, Cognition – The Nexus and The Liminal. Newcastle UK: Cambridge Scholars Pub., pp.2–17.
Colizzi, E.S., Vroomans, R.M. and Merks, R.M., 2020. Evolution of multicellularity by collective integration of spatial information. eLife [Online], 9:e56349. https://doi.org/10.7554/eLife.56349.
Coyle, S.M. et al., 2019. Coupled Active Systems Encode an Emergent Hunting Behavior in the Unicellular Predator Lacrymaria olor. Current Biology [Online], 29, pp.3838–3850. https://doi.org/10.1016/j.cub.2019.09.034.
Dennett, D., 2017. From Bacteria to Bach and Back: The Evolution of Minds. New York: Norton & Company.
Denning, P., 2007. Computing is a natural science. Communications of the ACM, 50(7), pp.13–18.
Denning, P., 2010. Computing Science: The Great Principles of Computing. American Scientist, 98(5), pp.369–372.
Dobzhansky, T., 1973. Nothing in Biology Makes Sense Except in the Light of Evolution. American Biology Teacher [Online], 35(3), pp.125–129. https://doi.org/10.2307/4444260.
Dodig-Crnkovic, G., 2007. Epistemology Naturalized: The Info-Computationalist Approach. APA Newsletter on Philosophy and Computers, 06(2), pp.9–13.
Dodig-Crnkovic, G., 2013a. The Development of Models of Computation with Advances in Technology and Natural Sciences. 6th AISB Symposium on Computing and Philosophy: The Scandal of Computation - What is Computation? - AISB Convention 2013.
Dodig-Crnkovic, G., 2013b. The Info-computational Nature of Morphological Computing. In: V.C. Müller, ed. Philosophy and Theory of Artificial Intelligence [Online]. Vol. 5, Studies in Applied Philosophy, Epistemology and Rational Ethics. Berlin, Heidelberg: Springer, pp.59–68. https://doi.org/10.1007/978-3-642-31674-6_5.
Dodig-Crnkovic, G., 2014a. Modeling Life as Cognitive Info-Computation. In: A. Beckmann, E. Csuhaj-Varjú and K. Meer, eds. Computability in Europe 2014. LNCS. Berlin; Heidelberg: Springer, pp.153–162.
Dodig-Crnkovic, G., 2014b. Why we need info-computational constructivism. Constructivist Foundations, 9(2), pp.246–255.
Dodig-Crnkovic, G., 2017a. Computational Dynamics of Natural Information Morphology, Discretely Continuous. Philosophies [Online], 2(4), p.23. https://doi.org/10.3390/philosophies2040023.
Dodig-Crnkovic, G., 2017b. Morphologically Computing Embodied, Embedded, Enactive, Extended Cognition [Online]. PT-AI 2017. Available at: <https://www.pt-ai.org/2017/posters>.
Dodig-Crnkovic, G., 2017c. Nature as a network of morphological infocomputational processes for cognitive agents. European Physical Journal: Special Topics [Online], 226(2). https://doi.org/10.1140/epjst/e2016-60362-9.
Dodig-Crnkovic, G., 2018. Cognition as Embodied Morphological Computation. In: V.C. Müller, ed. Philosophy and Theory of Artificial Intelligence 2017 [Online], Studies in Applied Philosophy, Epistemology and Rational Ethics. Cham: Springer International Publishing, pp.19–23. https://doi.org/10.1007/978-3-319-96448-5_2.
Dodig-Crnkovic, G., 2020. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies [Online], 5(3), pp.17–32. https://doi.org/10.3390/philosophies5030017.
Dodig-Crnkovic, G., 2021. Cognition as a Result of Information Processing in Living Agent’s Morphology. Species-specific Cognition and Intelligence. Proceedings of 16th SweCog Conference [Online], pp.22–25. Available at: <https://www.diva-portal.org/smash/get/diva2:1611781/FULLTEXT01.pdf> [visited on 10 January 2023].
Dodig-Crnkovic, G., 2022. Cognitive architectures based on natural infocomputation. In: V.C. Müller, ed. Philosophy and theory of artificial intelligence 2021. SAPERE. Berlin, Heidelberg: Springer.
Dodig-Crnkovic, G. and Burgin, M., 2011. Information and Computation. Singapore: World Scientific.
Dodig-Crnkovic, G. and Giovagnoli, R., 2013. Computing nature – A network of networks of concurrent information processes. Computing Nature [Online]. Vol. 7. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-37225-4_1.
Dodig-Crnkovic, G. and Giovagnoli, R., 2017. Representation and Reality in Humans, Other Living Organisms and Intelligent Machines [Online]. Ed. by G. Dodig-Crnkovic and R. Giovagnoli, Studies in Applied Philosophy, Epistemology and Rational Ethics, 28. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-43784-2.
Dodig-Crnkovic, G. and Müller, V.C., 2011. A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic. In: G. Dodig Crnkovic and M. Burgin, eds. Information and Computation. Singapore: World Scientific Pub Co Inc, pp.149–184.
Fields, C., Friston, K. et al., 2022. The Free Energy Principle drives neuromorphic development [Online]. arXiv. Available at: <http://arxiv.org/abs/2207.09734> [visited on 10 January 2023].
Fields, C. and Levin, M., 2019. Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Communicative & Integrative Biology [Online], 12(1), pp.119–132. https://doi.org/10.1080/19420889.2019.1643666.
Ginsburg, S. and Jablonka, E., 2019. The Evolution of the Sensitive Soul [Online]. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/11006.001.0001.
Gudivada, V., Pankanti, S., Seetharaman, G. and Zhang, Y., 2019. "Cognitive Computing Systems: Their Potential and the Future". Computer [Online], 52(05), pp.13–18. https://doi.org/10.1109/MC.2019.2904940.
Hauser, H., Füchslin, R. and Pfeifer, R., 2014. Opinions and Outlooks on Morphological Computation. e-book.
Held, M. et al., 2010. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature Methods, 7(9), pp.747–754.
Jablonka, E. and Lamb, M., 2014. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Revised Edition. Life and Mind: Philosophical Issues in Biology and Psychology. Cambridge, MA: A Bradford Book; MIT Press.
Kampis, G., 1991. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity. Amsterdam: Pergamon Press.
Kriegman, S., Blackiston, D., Levin, M. and Bongard, J., 2021. Kinematic self-replication in reconfigurable organisms. Proceedings of the National Academy of Sciences [Online], 118(49), e2112672118. https://doi.org/10.1073/pnas.2112672118.
Laland, K.N. et al., 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences [Online], 282(1813), p.20151019. https://doi.org/10.1098/rspb.2015.1019.
Levin, M., Keijzer, F., Lyon, P. and Arendt, D., 2021. Basal cognition: multicellularity, neurons and the cognitive lens, Special issue, Part 2. Phil. Trans. R. Soc. B, 376(20200458).
Lyon, P., Keijzer, F., Arendt, D. and Levin, M., 2021. Basal cognition: conceptual tools and the view from the single cell - Special issue, Part 1. Phil. Trans. R. Soc. B, 376(20190750).
Manicka, S. and Levin, M., 2019. The Cognitive Lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philosophical Transactions of the Royal Society B, 374(1774).
Marijuán, P.C., Navarro, J. and del Moral, R., 2010. On prokaryotic intelligence: Strategies for sensing the environment. BioSystems [Online], 99(2), pp.94–103. https://doi.org/10.1016/j.biosystems.2009.09.004.
Markram, H., 2012. The Human Brain Project. Scientific American, 306(6), pp.50–55.
Maturana, H., 1970. Biology of Cognition. (Biological Computer Laboratory Research Report BCL 9). Urbana, IL: University of Illinois.
Maturana, H. and Varela, F., 1980. Autopoiesis and Cognition: The Realization of the Living. Dordrecht: D. Reidel Pub. Co.
Maturana, H.R. and Varela, F.J., 1992. The Tree of Knowledge: The Biological Roots of Human Understanding. Rev. Boston, MA: Shambala.
McMillen, P., Walker, S.I. and Levin, M., 2022. Information Theory as an Experimental Tool for Integrating Disparate Biophysical Signaling Modules. Int. J. Mol. Sci. [Online], 23(9580). https://doi.org/10.3390/ ijms23179580.
Mearns, D.S. et al., 2020. Deconstructing Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop. Current Biology [Online], 30(1), 54–69.e1–e9. https://doi.org/10.1016/j.cub.2019.11.022.
Mitchell, M., 2012. Biological computation. Computer Journal, 55(7), pp.852–855.
Modha, D.S. et al., 2011. Cognitive Computing. Communications of the ACM, 54(8), pp.62–71.
Müller, G.B., 2017a. Correction to ‘Why an extended evolutionary synthesis is necessary’. Interface Focus, 7(20170065).
Müller, G.B., 2017b. Why an extended evolutionary synthesis is necessary. Interface Focus, 7(2017001520170015).
Ng, W.-L. and Bassler, B., 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, pp.197–222.
Pfeifer, R. and Bongard, J., 2006. How the Body Shapes the Way We Think – a New View of Intelligence. Cambridge, MA: MIT Press.
Pfeifer, R. and Iida, F., 2005. Morphological computation: Connecting body, brain and environment. Japanese Scientific Monthly, 58(2), pp.48–54.
Pfeifer, R., Lungarella, M. and Iida, F., 2007. Self-organization, embodiment, and biologically inspired robotics. Science, 318, pp.1088–1093.
Piccinini, G., 2020. Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford: Oxford scholarship online.
Polak, P. and Krzanowski, R., 2019. Deanthropomorphized Pancomputationalism and the Concept of Computing. Foundations of Computing and Decision Sciences [Online], 44(1), pp.45–54. https://doi.org/10.2478/fcds-2019-0004.
Rosenbloom, P., 2015. On Computing: The Fourth Great Scientific Domain. Cambridge, MA: MIT Press.
Royal Society, 2016. New trends in evolutionary biology: biological, philosophical and social science perspectives [Online]. Available at: <https://royalsociety.org/science-events-and-lectures/2016/11/evolutionary-biology/>.
Rozenberg, G. and Kari, L., 2008. The many facets of natural computing. Communications of the ACM [Online], 51, pp.72–83. https://doi.org/10.1145/1400181.1400200.
Sarosiek, A., 2021. The role of biosemiosis and semiotic scaffolding in the processes of developing intelligent behaviour. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (70), pp.9–44. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/535>.
Schauder, S. and Bassler, B., 2001. The languages of bacteria. Genes & Dev., 15, pp.1468–1480.
Scheutz, M., 2002. Computationalism New Directions. Cambridge, MA: MIT Press.
Schwab, D.B., Casasa, S. and Moczek, A., 2019. On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Frontiers in Genetics [Online], 9(735). https://doi.org/10.3389/fgene.2018.00735.
Shannon, C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal [Online], 27(July 1928), pp.379–423. https://doi.org/10.1145/584091.584093.
Sloman, A., 1984. The structure of the space of possible minds. In: S. Torrance, ed. The Mind and the Machine: philosophical aspects of Artificial Intelligence. Chichester: Ellis Horwood, pp.35–42.
Srinivasa, N. and Cruz-Albrecht, J., 2012. Neuromorphic adaptive plastic scalable electronics: analog learning systems. IEEE Pulse [Online], 3(1), pp.51–56. https://doi.org/10.1109/MPUL.2011.2175639.
Stewart, J., 1996. Cognition = life: Implications for higher-level cognition. Behavioral Processes, 35, 311–326.
Svensson, E.I., 2018. On Reciprocal Causation in the Evolutionary Process. Evol Biol, 45, pp.1–14.
Valiant, L., 2013. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. New York, NY: Basic Books.
Waters, C.M. and Bassler, B., 2005. Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21, pp.319–346.
Weiss, J., 2020. Single-celled Lacrymaria olor Hunts Down Another Cell [Online]. Available at: <https://www.youtube.com/watch?v=sq6Y54mxjOg>.
Witzany, G., 2011. Introduction: Key Levels of Biocommunication of Bacteria. In: G. Witzany, ed. Biocommunication in Soil Microorganisms [Online]. Vol. 23. Berlin, Heidelberg: Springer, pp.1–34. https://doi.org/10.1007/978-3-642-14512-4_1.
Wlotzka, B. and McCaskill, J.S., 1997. A molecular predator and its prey: coupled isothermal amplification of nucleic acids. Cell Chemical Biology, 4(1), pp.25–33.
Yuste, R. and Levin, M., 2021. New Clues about the Origins of Biological Intelligence. A common solution is emerging in two different fields: developmental biology and neuroscience. Scientific American [Online]. Available at: <https://www.scientificamerican.com/article/new-clues-about-the-origins-of-biological-intelligence/> [visited on 10 January 2023].
Zenil, H., 2012. A Computable Universe: Understanding Computation & Exploring Nature As Computation. Ed. by H. Zenil. Singapore: World Scientific Publishing Company/Imperial College Press.