Category Theory in the hands of physicists, mathematicians, and philosophers
Main Article Content
Abstract
Book review: Category Theory in Physics, Mathematics, and Philosophy, Kuś M., Skowron B. (eds.), Springer Proc. Phys. 235, 2019, pp.xii+134.
Article Details
References
Awodey, S., 2010. Category Theory. 2nd ed., Oxford Logic Guides 52. Oxford; New York: Oxford University Press.
Britto, R., Cachazo, F., Feng, B. and Witten, E., 2005. Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. [Online], 94, p.181602. arXiv: hep-th/0501052. Available at: https://doi.org/10.1103/PhysRevLett.94.181602.
Heller, M. and Król, J., 2016. How Logic Interacts with Geometry: Infinitesimal Curvature of Categorical Spaces. arXiv: 1605.03099 [math.DG].
Heller, M. and Król, J., 2017. Infinitesimal Structure of Singularities. Universe [Online], 3(1), p.16. Available at: https://doi.org/10.3390/universe3010016.
Heller, M., 2018. Filozoficznie prowokująca teoria kategorii. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (65), pp.232–241. Available at: <https://zfn.edu.pl/index.php/zfn/article/view/451> [visited on 24 July 2020].
Król, J., Asselmeyer-Maluga, T., Bielas, K. and Klimasara, P., 2017. From Quantum to Cosmological Regime. The Role of Forcing and Exotic 4-Smoothness. Universe [Online], 3(2), p.31. Available at: https://doi.org/10.3390/universe3020031.
List, C., 2019. Levels: Descriptive, Explanatory, and Ontological. Noûs [Online], 53(4), pp.852–883. Available at: https://doi.org/10.1111/nous.12241.
McLarty, C., 1995. Elementary Categories, Elementary Toposes. Oxford: Oxford University Press.
Smith, P., 2018. Category Theory: A Gentle Introduction [Online]. University of Cambridge, lecture notes. Available at: <http://www.logicmatters.net/resources/pdfs/GentleIntro.pdf> [visited on 24 July 2020].