Mathematics as a love of wisdom: Saunders Mac Lane as philosopher

Main Article Content

Colin McLarty

Abstract

This note describes Saunders Mac Lane as a philosopher, and indeed as a paragon naturalist philosopher. He approaches philosophy as a mathematician. But, more than that, he learned philosophy from David Hilbert’s lectures on it, and by discussing it with Hermann Weyl, as much as he did by studying it with the mathematically informed Göttingen Philosophy professor Moritz Geiger.

Article Details

Section
Articles

References

Browder, F.E., 1976. The relevance of mathematics. The American Mathematical Monthly [Online], 83(4), pp.249–254. Available at: https://doi.org/10.2307/2318212 [visited on 9 November 2020].

Browder, F.E. and Mac Lane, S., 1978. The relevance of mathematics. In: L.A. Steen, ed. Mathematics Today: Twelve Informal Essays. New York [etc.]: Springer-Verlag, pp.323–350.

Eilenberg, S. and Mac Lane, S., 1945. General theory of natural equivalences. Transactions of the American Mathematical Society [Online], 58, pp.231–294. Available at: [visited on 29 October 2020].

Ewald, W., 2005. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Vol. 2. Oxford: Clarendon Press.

Fitzgerald, A. and Mac Lane, S., eds., 1977. Pure and Applied Mathematics in the People’s Republic of China: A Trip Report of the American Pure and Applied Mathematics Delegation. Washington, D.C.: National Academy of Sciences.

Hilbert, D., 1923. Die logischen Grundlagen der Mathematik. Mathematische Annalen [Online], 88, pp.151–165. Available at: [visited on 9 November 2020].

Hilbert, D., 1926. Uber das Unendliche. Mathematische Annalen [Online], 95, pp.161–190. Available at: [visited on 9 November 2020].

Hilbert, D., 1930. Naturerkennen und Logik. Die Naturwissenschaften [Online], 18(47-49), pp.959–963. Available at: https://doi.org/10.1007/BF01492194 [visited on 10 November 2020]. I cite the reprint: Naturerkennen und Logik. Gesammelte abhandlungen. Bd. 3: Analysis, Grundlagen der Mathematik, Physic Verschiedenes. New York: Chelsea Publishing Company Bronx, 1965, pp.378–385.

Mac Lane, S., 1935. A Logical Analysis of Mathematical Structure: Monist [Online], 45(1), pp.118–130. Available at: https://doi.org/10.5840/monist19354515 [visited on 10 November 2020].

Mac Lane, S., 1939. Symbolic logic (Club topics). The American Mathematical Monthly [Online], 46(5), pp.289–296. Available at: [visited on 10 November 2020].

Mac Lane, S., 1946. Review of E. T. Bell The Development of Mathematics (New York, McGraw-Hill, 1945). The American Mathematical Monthly [Online], 53(7), pp.389–390. Available at: https://doi.org/10.2307/2305857 [visited on 10 November 2020].

Mac Lane, S., 1967. The future role of the federal government in mathematics. The American Mathematical Monthly [Online], 74(1 (Part 2: Fiftieth Anniversary Issue)), pp.92–100. Available at: https://doi.org/10.2307/2314871 [visited on 10 November 2020].

Mac Lane, S., 1986. Mathematics: Form and Function. New York [etc.]: Springer-Verlag.

Mac Lane, S., 1989. The Applied Mathematics Group at Columbia in World War II. In: P.L. Duren, R. Askey, H.M. Edwards and U.C. Merzbach, eds. A Century of Mathematics in America. Part III, History of mathematics 3. Providence, R.I.: American Mathematical Society, pp.495–515.

Mac Lane, S., 1995. ‘A Matter of Temperament’. New York Review of Books [Online], 45(15), p.56. Available at: [visited on 10 November 2020].

Mac Lane, S., 1997. Requiem for the Skillful. Notices of the American Mathematical Society, 44(2), pp.207–208.

Mac Lane, S., 2005. A Mathematical Autobiography. Wellesley, Mass: A K Peters.

Mac Lane, S. and Schilling, O.F.G., 1939. Zero-dimensional branches of rank one on algebraic varieties. Annals of Mathematics [Online], 40(3), pp.507–520. Available at: https://doi.org/10.2307/1968935 [visited on 10 November 2020].

Mac Lane, S. and Schilling, O.F.G., 1940. Normal algebraic number fields. Proceedings of the National Academy of Sciences [Online], 26(2), pp.122–126. Available at: https://doi.org/10.1073/pnas.26.2.122 [visited on 10 November 2020].

Maddy, P., 1997. Naturalism in Mathematics. Oxford: Clarendon Press.

Maddy, P., 2003. Second Philosophy. Journal of the Indian Council of Philosophical Research [Online], 20, pp.73–106. Available at: [visited on 10 November 2020].

Maddy, P., 2007. Second Philosophy: A Naturalistic Method. Oxford [etc.]: Oxford University Press.

McLarty, C., 2007. The Last Mathematician from Hilbert’s Gottingen: Saunders Mac Lane as Philosopher of Mathematics. The British Journal for the Philosophy of Science [Online], 58(1), pp.77–112. Available at: https://doi.org/10.1093/bjps/axl030 [visited on 10 November 2020].

McLarty, C., 2020. Saunders Mac Lane: From Principia Mathematica through Gottingen to the Working Theory of Structures. In: E. Reck and G. Scheimer, eds. The Prehistory of Mathematical Structuralism [Online]. New York: Oxford University Press, pp.215–237. Available at: https://doi.org/10.1093/oso/9780190641221.003.0009 [visited on 10 November 2020].

Paseau, A., 2016. Naturalism in the philosophy of mathematics. The Stanford Encyclopedia of Philosophy [Online]. winter 2016. Stanford: Meta- physics Research Lab, Stanford University. Available at: [visited on 10 November 2020].

Sieg, W., 1999. Hilbert’s Programs: 1917–1922. Bulletin of Symbolic Logic [Online], 5(1), pp.1–44. Available at: https://doi.org/10.2307/421139 [visited on 10 November 2020].

Sieg, W., 2013. Hilbert’s programs and beyond. Oxford [etc.]: Oxford University Press.

Skowron, B., manuscript. Was Saunders Mac Lane a platonist? Manuscript made available in private communication. [unpublished].

Steingart, A., 2011. Conditional inequalities : American pure and applied mathematics, 1940-1975 [Online]. Thesis. Massachusetts Institute of Technology. Available at: [visited on 10 November 2020].

Weyl, H., 1918. Das Kontinuum: Kritische Untersuchungen uber die Grundlagen der Analysis. Leipzig: Verlag von Veit&Comp.

Weyl, H., 1927. Philosophie der Mathematik und Naturwissenschaft, Handbuch der Philosophie. Munchen; Berlin: Druck und Verlag von R. Oldenbourg.

Weyl, H., 1949. Philosophy of Mathematics and Natural Science (O. Helmer, Trans.). Princeton: Princeton University Press. This book makes many additions to the 1927 German version.