Information and physics

Main Article Content

Radosław Kycia
Agnieszka Niemczynowicz

Abstract

This is an overview article that contains the discussion of the connection between information and physics at the elementary level. We present a derivation of Lindauer’s bound for heat emission during irreversible logical operation. In this computation the Szilard’s version of Maxwell’s demon paradox is used as a model to design thermodynamic implementation of a single bit of computer memory. Lindauer’s principle also motivates the discussion on the practical and emergent nature of the information. Apart from physics, the principle has implications in philosophy.

Article Details

Section
Articles

References

Bennett, C.H., 1973. Logical reversibility of computation. IBM Journal of Research and Development [Online], 17(6), pp.525–532. Available at: https://doi.org/10.1147/rd.176.0525 [visited on 14 November 2020].

Bennett, C.H., 1987. Demons, engines and the second law. Scientific American [Online], 257(5), pp.108–116. Available at: https://doi.org/10.1038/scientificamerican1187-108 [visited on 14 November 2020].

Bérut, A. et al., 2012. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature [Online], 483(7388), pp.187–189. Available at: https://doi.org/10.1038/nature10872 [visited on 13 November 2020].

Bormashenko, E., 2019. Generalization of the Landauer principle for computing devices based on many-valued logic. Entropy [Online], 21(12), p.1150. Available at: https://doi.org/10.3390/e21121150 [visited on 13 November 2020].

Feynman, R.P. and Hey, A.J.G., 2000. Feynman Lectures on Computation. 1. paperback print., [Nachdr.], The advanced book program. Reading, Mass: Westview.

Fong, B. and Spivak, D.I., 2019. An Invitation to Applied Category Theory: Seven Sketches in Compositionality [Online]. Cambridge: Cambridge University Press. Available at: [visited on 14 November 2020].

Hayes, B., 2001. Third base. American Scientist [Online], 89, pp.490–494. Available at: [visited on 14 November 2020].

Kycia, R., 2018. Landauer’s principle as a special case of Galois connection. Entropy [Online], 20(12), p.971. Available at: https://doi.org/10.3390/e20120971 [visited on 13 November 2020].

Kycia, R.A., 2019. Entropy in themodynamics: from foliation to categorization. arXiv:1908.07583 [cond-mat, physics:math-ph] [Online]. Available at: [visited on 13 November 2020].

Kycia, R.A. and Niemczynowicz, A., 2020. Simple explanation of Landauer’s bound and its ineffectiveness for multivalued logic. arXiv:2001.00942 [cond-mat, physics:math-ph] [Online]. Available at: [visited on 13 November 2020].

Ladyman, J., Presnell, S., Short, A.J. and Groisman, B., 2007. The connection between logical and thermodynamic irreversibility. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics [Online], 38(1), pp.58–79. Available at: https://doi.org/10.1016/j.shpsb.2006.03.007 [visited on 13 November 2020].

Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development [Online], 5, pp.183–191. Available at: [visited on 14 November 2020].

Lychagin, V.V., 2019. Contact Geometry, Measurement, and Thermodynamics. In: R.A. Kycia, M. Ułan and E. Schneider, eds. Nonlinear PDEs, Their Geometry, and Applications [Online]. Cham: Springer International Publishing, pp.3–52. Available at: https://doi.org/10.1007/978-3-030-17031-8\_1 [visited on 14 November 2020].

Piechocinska, B., 2000. Information erasure. Physical Review A [Online], 61(6), p.062314. Available at: https://doi.org/10.1103/PhysRevA.61.062314 [visited on 13 November 2020].

Reza, F., 1994. An Introduction to Information Theory. New York: Dover Publications, Inc.

Sagawa, T., 2014. Thermodynamic and logical reversibilities revisited. Journal of Statistical Mechanics: Theory and Experiment [Online], 2014(3), P03025. Available at: https://doi.org/10.1088/1742-5468/2014/03/P03025 [visited on 13 November 2020].

Schneider, E., 2019. Differential Invariants in Thermodynamics. In: R.A. Kycia, M. Ułan and E. Schneider, eds. Nonlinear PDEs, Their Geometry, and Applications [Online]. Cham: Springer International Publishing, pp.223–232. Available at: https://doi.org/10.1007/978-3-030-17031-8\_7 [visited on 14 November 2020].

Smith, P., 2018. Category Theory: A Gentle Introduction [Online]. Available at: [visited on 14 November 2020].

Still, S., 2020. Thermodynamic cost and benefit of memory. Physical Review Letters [Online], 124(5), p.050601. Available at: https://doi.org/10.1103/PhysRevLett.124.050601 [visited on 13 November 2020].

Szilard, L., 1929. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik [Online], 53(11-12), pp.840–856. Available at: https://doi.org/10.1007/BF01341281 [visited on 13 November 2020].

Yan, L.L. et al., 2018. Single-atom demonstration of the quantum Landauer principle. Physical Review Letters [Online], 120(21), p.210601. Available at: https://doi.org/10.1103/PhysRevLett.120.210601 [visited on 13 November 2020].