The process of microRNAs discovery
Main Article Content
Abstract
The widespread particularist account of the onset of molecular biology that identifies it with the discovery of the DNA structure in 1953 has been recently contested. The paper contributes to this debate by focusing on a more recent discovery of small noncoding RNAs (microRNAs). First, it outlines a particularist account of the microRNAs discovery and the origins of the particularist predilection of the modern scientometric studies of science dynamics. Next, it discusses its limitations and proposes an alternative, modified processualist account of the discovery. In the final part, the paper applies this approach to unravel network dynamics of the research on the first two microRNAs that were discovered, namely lin-4 and let-7.
Article Details
References
Bracht, J.R., Van Wynsberghe, P.M., Mondol, V. and Pasquinelli, A.E., 2010. Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Developmental Biology [Online], 348(2), pp.210–221. Available at: https://doi.org/10.1016/j.ydbio.2010.10.003 [visited on 11 July 2020].
Calin, G.A. et al., 2002. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences [Online], 99(24), pp.15524–15529. Available at: https://doi.org/10.1073/pnas.242606799 [visited on 11 July 2020].
Cinkornpumin, J. et al., 2017. A small molecule screen to identify regulators of let-7 targets. Scientific Reports [Online], 7(1), p.15973. Available at: https://doi.org/10.1038/s41598-017-16258-9 [visited on 11 July 2020].
Crick, F., 1970. Central Dogma of Molecular Biology. Nature [Online], 227(5258), pp.561–563. Available at: https://doi.org/10.1038/227561a0.
Darnell, J.E., 2011. RNA: Life’s Indispensable Molecule. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press.
De Mey, M., 1982. The Cognitive Paradigm: Cognitive Science, a Newly Explored Approach to the Study of Cognition Applied in an Analysis of Science and Scientific Knowledge [Online]. Dordrecht: Springer. Available at: <https://doi.org/10.1007/978-94-009-7956-7> [visited on 11 July 2020].
Fu, Y. et al., 2011. Circulating microRNAs in patients with active pulmonary tuberculosis. Journal of Clinical Microbiology [Online], 49(12), pp.4246–4251. Available at: https://doi.org/10.1128/JCM.05459-11 [visited on 11 July 2020].
Fuller, S., 1992. Being there with Thomas Kuhn: a parable for postmodern times. History and Theory [Online], 31(3), pp.241–275. Available at: https://doi.org/10.2307/2505370.
García-Sancho, M., 2012. Biology, Computing, and the History of Molecular Sequencing: From Proteins to DNA, 1945-2000 [Online], Science, Technology and Medicine in Modern History. Houndmills: Palgrave Macmillan UK. Available at: https://doi.org/10.1057/9780230370937.
Hall, A.R., 1954. The Scientific Revolution 1500-1800: The Formation of the Modern Scientific Attitude. London [etc.]: Longmans, Green and Co.
He, C. et al., 2019. OncomiR or antioncomiR: Role of miRNAs in acute myeloid leukemia. Leukemia & Lymphoma [Online], 60(2), pp.284–294. Available at: https://doi.org/10.1080/10428194.2018.1480769.
Johnson, C.D. et al., 2007. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research [Online], 67(16), pp.7713–7722. Available at: https://doi.org/10.1158/0008-5472.CAN-07-1083 [visited on 11 July 2020].
Kawalec, P., 2018. Transformations in breakthrough research: The emergence of miRNAs as a research routine in molecular biology. Open Information Science [Online], 2(1), pp.127–146. Available at: https://doi.org/10.1515/opis-2018-0010 [visited on 28 September 2019].
Kawalec, P., 2020. Cognitive dynamics of research routines: case study of microRNA. In: R. Giovagnoli and R. Lowe, eds. The Logic of Social Practices [Online]. Vol. 52. Cham: Springer International Publishing, pp.133–152. Available at: https://doi.org/10.1007/978-3-030-37305-4_9 [visited on 11 July 2020].
Kuehbacher, A., Urbich, C., Zeiher Andreas, M. and Dimmeler, S., 2007. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research [Online], 101(1), pp.59–68. Available at: https://doi.org/10.1161/CIRCRESAHA.107.153916 [visited on 11 July 2020].
Kuhn, T.S., 1970. The Structure of Scientific Revolutions. 2nd ed., enl, International Encyclopedia of Unified Science vol. 2, no. 2. Chicago; London: University of Chicago Press.
Kumar, M. et al., 2011. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. Journal of Allergy and Clinical Immunology [Online], 128(5), 1077–1085.e1–10. Available at: https://doi.org/10.1016/j.jaci.2011.04.034.
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T., 2001. Identification of novel genes coding for small expressed RNAs. Science [Online], 294(5543), pp.853–858. Available at: https://doi.org/10.1126/science.1064921.
Lagos-Quintana, M., Rauhut, R., Yalcin, A. et al., 2002. Identification of tissue-specific microRNAs from mouse. Current Biology [Online], 12(9), pp.735–739. Available at: https://doi.org/10.1016/S0960-9822(02)00809-6 [visited on 11 July 2020].
Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P., 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science [Online], 294(5543), pp.858–862. Available at: https://doi.org/10.1126/science.1065062.
Lee, R.C. and Ambros, V., 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science [Online], 294(5543), pp.862–864. Available at: https://doi.org/10.1126/science.1065329.
Lee, R.C., Feinbaum, R.L. and Ambros, V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell [Online], 75(5), pp.843–854. Available at: https://doi.org/10.1016/0092-8674(93)90529-y.
Losee, J., 2004. Theories of Scientific Progress: An Introduction. New York; London: Routledge.
Mayr, C., Hemann, M.T. and Bartel, D.P., 2007. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science (New York, N.Y.) [Online], 315(5818), pp.1576–1579. Available at: https://doi.org/10.1126/science.1137999 [visited on 11 July 2020].
Merton, R. and Garfield, E., 1986. Foreword. Little Science, Big Science– and Beyond. New York: Columbia University Press, pp.vii–xiii.
Nelson, C. and Ambros, V., 2019. Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity. Development [Online], 146(5), dev.172031. Available at: https://doi.org/10.1242/dev.172031.
Nicholson, D.J. and Dupré, J., eds., 2018. Everything Flows: Towards a Processual Philosophy of Biology [Online]. Vol. 1. Oxford University Press. Available at: https://doi.org/10.1093/oso/9780198779636.001.0001 [visited on 11 July 2020].
Park, S.-M. et al., 2007. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle [Online], 6(21), pp.2585–2590. Available at: https://doi.org/10.4161/cc.6.21.4845.
Pasquinelli, A.E. et al., 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature [Online], 408(6808), pp.86–89. Available at: https://doi.org/10.1038/35040556 [visited on 11 July 2020].
Pobezinsky, L.A. and Wells, A.C., 2018. Let’s fight cancer: let-7 is a tool to enhance antitumor immune responses. Future Oncology [Online], 14(12), pp.1141–1145. Available at: https://doi.org/10.2217/fon-2018-0037 [visited on 11 July 2020].
Reinhart, B.J. et al., 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature [Online], 403(6772), pp.901–906. Available at: https://doi.org/10.1038/35002607 [visited on 11 July 2020].
Roos, M.M., Li, M., Amara, P. and Chute, J.P., 2018. Pharmacologic targeting of LIN28/Let-7 in ccute myeloid leukemia. Blood [Online], 132(Supplement 1), pp.4072–4072. Available at: https://doi.org/10.1182/blood-2018-99-119982 [visited on 11 July 2020].
Schulte, L.N. et al., 2011. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. The EMBO Journal [Online], 30(10), pp.1977–1989. Available at: https://doi.org/10.1038/emboj.2011.94 [visited on 11 July 2020].
Sempere, L.F. et al., 2003. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Developmental Biology [Online], 259(1), pp.9–18. Available at: https://doi.org/10.1016/s0012-1606(03)00208-2.
Shapin, S., 2015. Kuhn’s structure: a moment in modern naturalism. In: W.J. Devlin and A. Bokulich, eds. Kuhn’s Structure of Scientific Revolutions - 50 Years On [Online], Boston Studies in the Philosophy and History of Science. Cham: Springer International Publishing, pp.11–21. Available at: https://doi.org/10.1007/978-3-319-13383-6_2 [visited on 11 July 2020].
de Solla Price, D.J., 1986. Little Science, Big Science. . .and Beyond. New York: Columbia University Press.
Sonoki, T., Iwanaga, E., Mitsuya, H. and Asou, N., 2005. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia [Online], 19(11), pp.2009–2010. Available at: https://doi.org/10.1038/sj.leu.2403938.
Spiegelman, S. and Hayashi, M., 1963. The present status of the transfer of genetic information and its control. Cold Spring Harbor Symposia on Quantitative Biology [Online], 28, pp.161–181. Available at: https://doi.org/10.1101/SQB.1963.028.01.029 [visited on 11 July 2020].
Wang, B.-G., Jiang, L.-Y. and Xu, Q., 2018. A comprehensive evaluation for polymorphisms in let-7 family in cancer risk and prognosis: a system review and meta-analysis. Bioscience Reports [Online], 38(4), BSR20180273. Available at: https://doi.org/10.1042/BSR20180273 [visited on 11 July 2020].
Watson, J.D., 1965. Molecular Biology of the Gene, Biology Teaching Monograph Series. New York; Amsterdam: W.A. Benjamin.
Wightman, B., Ha, I. and Ruvkun, G., 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell [Online], 75(5), pp.855–862. Available at: https://doi.org/10.1016/0092-8674(93)90530-4.
Yin, H. et al., 2015. Progress on the relationship between miR-125 family and tumorigenesis. Experimental Cell Research [Online], 339(2), pp.252–260. Available at: https://doi.org/10.1016/j.yexcr.2015.09.015.