Points. Lack thereof

Main Article Content

Fedele Lizzi

Abstract

I will discuss some aspects of the concept of “point” in quantum gravity, using mainly the tool of noncommutative geometry. I will argue that at Planck’s distances the very concept of point may lose its meaning. I will then show how, using the spectral action and a high momenta expansion, the connections between points, as probed by boson propagators, vanish. This discussion follows closely (Kurkov, Lizzi and Vassilevich, 2014).

Article Details

How to Cite
Lizzi, F. (2019). Points. Lack thereof. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (66), 35–60. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/471
Section
Emergence of the Classical

References

Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J. and Smolin, L., 2011. Principle of relative locality. Physical Review D [Online], 84(8), p.084010. arXiv: 1101.0931 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.84.084010 [Accessed 3 July 2019].

Andrianov, A.A., Kurkov, M.A. and Lizzi, F., 2011. Spectral action, Weyl anomaly and the Higgs-Dilaton potential. Journal of High Energy Physics [Online], 1110(10), p.1. arXiv: 1106.3263 [hep-th]. Available at: https://doi.org/10.1007/JHEP10(2011)001 [Accessed 3 July 2019].

Andrianov, A.A. and Lizzi, F., 2010. Bosonic Spectral Action Induced from Anomaly Cancelation. Journal of High Energy Physics [Online], 2010(5), p.57. arXiv: 1001.2036 [hep-th]. Available at: https://doi.org/10.1007/JHEP05(2010)057 [Accessed 3 July 2019].

Andrianov, A. and Bonora, L., 1984a. Finite-mode regularization of the fermion functional integral. Nuclear Physics B, 233(2), pp.232–246. Available at: https://doi.org/10.1016/0550-3213(84)90413-9.

Andrianov, A. and Bonora, L., 1984b. Finite-mode regularization of the fermion functional integral (II). Nuclear Physics B, 233(2), pp.247–261. Available at: https://doi.org/10.1016/0550-3213(84)90414-0.

Aschieri, P. et al., 2009. Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory, Lecture Notes in Physics 774. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-540-89793-4.

Asorey, M., Balachandran, A.P., Lizzi, F. and Marmo, G., 2017. Equations of motion as constraints: superselection rules, Ward identities. Journal of High Energy Physics [Online], 2017(3), p.136. arXiv: 1612.05886 [hep-th]. Available at: https://doi.org/10.1007/JHEP03(2017)136 [Accessed 3 July 2019].

Asorey, M., Balachandran, A.P., Lizzi, F. and Marmo, G., 2018. Entangled scent of a charge. Journal of High Energy Physics [Online], 2018(5), p.130. Available at: https://doi.org/10.1007/JHEP05(2018)130 [Accessed 3 July 2019].

Aydemir, U., 2019. Clifford-based spectral action and renormalization group analysis of the gauge couplings. The European Physical Journal C [Online], 79(4), p.325. arXiv: 1902.08090 [hep-th]. Available at: https://doi.org/10.1140/epjc/s10052-019-6846-9 [Accessed 3 July 2019].

Aydemir, U., Minic, D., Sun, C. and Takeuchi, T., 2016. Pati–Salam unification from noncommutative geometry and the TeV-scale WR boson. International Journal of Modern Physics A [Online], 31(01), p.1550223. arXiv: 1509.01606 [hep-th]. Available at: https://doi.org/10.1142/S0217751X15502231 [Accessed 3 July 2019].

Barvinsky, A.O. and Vilkovisky, G.A., 1990. Covariant perturbation theory (II). Second order in the curvature. General algorithms. Nuclear Physics B, 333(2), pp.471–511. Available at: https://doi.org/10.1016/0550-3213(90)90047-H.

Bayen, F. et al., 1978. Deformation theory and quantization. I. Deformations of symplectic structures. Annals of Physics, 111(1), pp.61–110. Available at: https://doi.org/10.1016/0003-4916(78)90224-5.

Bizi, N., Brouder, C. and Besnard, F., 2018. Space and time dimensions of algebras with application to Lorentzian noncommutative geometry and quantum electrodynamics. Journal of Mathematical Physics [Online], 59(6), p.062303. Available at: https://doi.org/10.1063/1.5010424 [Accessed 3 July 2019].

Bochniak, A. and Sitarz, A., 2018. Finite pseudo-Riemannian spectral triples and the standard model. Physical Review D [Online], 97(11), p.115029. arXiv: 1804.09482 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.97.115029 [Accessed 3 July 2019].

Bronstein, M., 1936. Quantentheorie schwacher Gravitationsfelder. Physikalische Zeitschrift der Sowjetunion, 9(2-3), pp.140–157.

Carlip, S., 2019. Dimension and dimensional reduction in quantum gravity. Universe [Online], 5(3), p.83. arXiv: 1904.04379 [gr-qc]. Available at: https://doi.org/10.3390/universe5030083 [Accessed 3 July 2019].

Chamseddine, A.H., Connes, A. and Marcolli, M., 2007. Gravity and the standard model with neutrino mixing. Advances in Theoretical and Mathematical Physics [Online], 11(6), pp.991–1089. arXiv: hep-th/0610241. Available at: https://doi.org/10.4310/ATMP.2007.v11.n6.a3 [Accessed 3 July 2019].

Chamseddine, A.H., Connes, A. and Suijlekom, W.D. van, 2013. Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. Journal of High Energy Physics [Online], 2013(11), p.132. arXiv: 1304.8050 [hep-th]. Available at: https://doi.org/10.1007/JHEP11(2013)132 [Accessed 3 July 2019].

Connes, A., 1994. Noncommutative geometry. San Diego, New York, etc.: Academic Press.

D’Andrea, F., Kurkov, M.A. and Lizzi, F., 2016. Wick rotation and fermion doubling in noncommutative geometry. Physical Review D, 94(2), p.025030. Available at: https://doi.org/10.1103/PhysRevD.94.025030.

D’Andrea, F., Lizzi, F. and Martinetti, P., 2014. Spectral geometry with a cut-off: Topological and metric aspects. Journal of Geometry and Physics [Online], 82, pp.18–45. arXiv: 1305.2605 [math-ph]. Available at: https://doi.org/10.1016/j.geomphys.2014.03.014 [Accessed 3 July 2019].

Devastato, A., Farnsworth, S., Lizzi, F. and Martinetti, P., 2018. Lorentz signature and twisted spectral triples. Journal of High Energy Physics [Online], 2018(3), p.89. arXiv: 1710.04965 [hep-th]. Available at: https://doi.org/10.1007/JHEP03(2018)089 [Accessed 3 July 2019].

Devastato, A., Kurkov, M. and Lizzi, F., n.d. The Standard Model as a Spectral Noncommutative Geometry. To appear in International Journal of Modern Physics A.

Devastato, A., Lizzi, F. and Martinetti, P., 2014a. Higgs mass in noncommutative geometry: Higgs NCG. Fortschritte der Physik, 62(9-10), pp.863–868. Available at: https://doi.org/10.1002/prop.201400013.

Devastato, A., Lizzi, F. and Martinetti, P., 2014b. Grand Symmetry, Spectral Action, and the Higgs mass. Journal of High Energy Physics [Online], (1), p.42. arXiv: 1304.0415 [hep-th]. Available at: https://doi.org/10.1007/JHEP01(2014)042 [Accessed 3 July 2019].

Doplicher, S., Fredenhagen, K. and Roberts, J.E., 1995. The quantum structure of spacetime at the Planck scale and quantum fields. Communications in Mathematical Physics [Online], 172(1), pp.187–220. arXiv: hep-th/0303037. Available at: https://doi.org/10.1007/BF02104515 [Accessed 3 July 2019].

Dungen, K. van den, 2016. Krein Spectral Triples and the Fermionic Action. Mathematical Physics, Analysis and Geometry, 19(1), p.4. Available at: https://doi.org/10.1007/s11040-016-9207-z.

Franco, N. and Eckstein, M., 2013. An algebraic formulation of causality for noncommutative geometry. Classical and Quantum Gravity [Online], 30(13), p.135007. arXiv: 1212.5171 [math-ph]. Available at: https://doi.org/10.1088/0264-9381/30/13/135007 [Accessed 3 July 2019].

Franco, N. and Eckstein, M., 2014. Exploring the Causal Structures of Almost Commutative Geometries. Symmetry, Integrability and Geometry: Methods and Applications [Online], 10, p.010. arXiv: 1310.8225 [math-ph]. Available at: https://doi.org/10.3842/SIGMA.2014.010 [Accessed 3 July 2019].

Franco, N. and Eckstein, M., 2015. Causality in noncommutative two-sheeted space-times. Journal of Geometry and Physics [Online], 96, pp.42–58. arXiv: 1502.04683 [math-ph]. Available at: https://doi.org/10.1016/j.geomphys.2015.05.008 [Accessed 3 July 2019].

Frohlich, J. and Gawedzki, K., 1993. Conformal Field Theory and Geometry of Strings [Online]. arXiv: hep-th/9310187. [Accessed 3 July 2019].

Fujikawa, K. and Suzuki, H., 2004. Path integrals and quantum anomalies, Oxford science publications no. 122. Oxford - New York: Clarendon Press ; Published in the United States by Oxford University Press.

Galluccio, S., Lizzi, F. and Vitale, P., 2008. Twisted noncommutative field theory with the Wick-Voros and Moyal products. Physical Review D, 78(8), p.085007. arXiv: 0810.2095 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.78.085007 [Accessed 3 July 2019].

Galluccio, S., Lizzi, F. and Vitale, P., 2009. Translation invariance, commutation relations and ultraviolet/infrared mixing. Journal of High Energy Physics [Online], 2009(09), pp.054–054. arXiv: 0907.3640 [hep-th]. Available at: https://doi.org/10.1088/1126-6708/2009/09/054 [Accessed 3 July 2019].

Gerstenhaber, M., 1964. On the Deformation of Rings and Algebras. Annals of Mathematics [Online], 79(1), pp.59–103. Available at: https://doi.org/10.2307/1970484 [Accessed 3 July 2019].

Groenewold, H.J., 1946. On the principles of elementary quantum mechanics. Physica, 12(7), pp.405–460. Available at: https://doi.org/10.1016/S0031-8914(46)80059-4.

Heisenberg, W., 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), pp.172–198. Available at: https://doi.org/10.1007/BF01397280.

Huggett, N., 2018. A Philosopher Looks at Non-Commutative Geometry [Online]. Available at: <http://philsci-archive.pitt.edu/id/eprint/15432> [Accessed 30 June 2019].

Kurkov, M.A. and Lizzi, F., 2012. Higgs-Dilaton Lagrangian from Spectral Regularization. Modern Physics Letters A [Online], 27(35), p.1250203. arXiv: 1210.2663 [hep-th]. Available at: https://doi.org/10.1142/S0217732312502033 [Accessed 3 July 2019].

Kurkov, M. and Vassilevich, D., 2017. Parity anomaly in four dimensions. Physical Review D [Online], 96(2), p.025011. arXiv: 1704.06736 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.96.025011 [Accessed 3 July 2019].

Kurkov, M., Lizzi, F. and Vassilevich, D., 2014. High energy bosons do not propagate. Physics Letters B [Online], 731, pp.311–315. arXiv: 1312.2235 [hep-th]. Available at: https://doi.org/10.1016/j.physletb.2014.02.053 [Accessed 2 July 2019].

Kurkov, M.A. and Sakellariadou, M., 2014. Spectral Regularisation: Induced Gravity and the Onset of Inflation. Journal of Cosmology and Astroparticle Physics [Online], 2014(01), pp.035–035. arXiv: 1311.6979 [hep-th]. Available at: https://doi.org/10.1088/1475-7516/2014/01/035 [Accessed 3 July 2019].

Kurkov, M.A., 2016. Emergent spontaneous symmetry breaking and emergent symmetry restoration in rippling gravitational background. The European Physical Journal C [Online], 76(6), p.329. arXiv: 1601.00622 [hep-th]. Available at: https://doi.org/10.1140/epjc/s10052-016-4178-6 [Accessed 3 July 2019].

Kurkov, M.A. and Lizzi, F., 2018. Clifford structures in noncommutative geometry and the extended scalar sector. Physical Review D [Online], 97(8), p.085024. arXiv: 1801.00260 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.97.085024 [Accessed 3 July 2019].

Kurkov, M.A., Lizzi, F., Sakellariadou, M. and Watcharangkool, A., 2015. Spectral action with zeta function regularization. Physical Review D [Online], 91(6), p.065013. arXiv: 1412.4669 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.91.065013 [Accessed 3 July 2019].

Kurkov, M. and Vassilevich, D., 2018. Gravitational parity anomaly with and without boundaries. Journal of High Energy Physics [Online], 2018(3), p.72. arXiv: 1801.02049 [hep-th]. Available at: https://doi.org/10.1007/JHEP03(2018)072 [Accessed 3 July 2019].

Landi, G., Lizzi, F. and Szabo, R.J., 1999. String geometry and the noncommutative torus. Communications in Mathematical Physics [Online], 206(3), pp.603–637. arXiv: hep-th/9806099. Available at: https://doi.org/10.1007/s002200050839 [Accessed 3 July 2019].

Lizzi, F., 2016. Spectral geometry for quantum spacetime. Il Nuovo Cimento C [Online], 38(5), pp.1–14. Available at: https://doi.org/10.1393/ncc/i2015-15165-3 [Accessed 3 July 2019].

Lizzi, F., 2018. Noncommutative Geometry and Particle Physics. Proceedings of Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity" – PoS(CORFU2017) [Online]. Corfu, Greece: Sissa Medialab, p.133. Available at: https://doi.org/10.22323/1.318.0133 [Accessed 3 July 2019].

Lizzi, F., Manfredonia, M., Mercati, F. and Poulain, T., 2019. Localization and reference frames in κ-Minkowski spacetime. Physical Review D [Online], 99(8), p.085003. arXiv: 1811.08409 [hep-th]. Available at: https://doi.org/10.1103/PhysRevD.99.085003 [Accessed 3 July 2019].

Lizzi, F., Vitale, P. and Zampini, A., 2006. The fuzzy disc: A review. Journal of Physics: Conference Series, (53), pp.830–842. Available at: https://doi.org/10.1088/1742-6596/53/1/054 [Accessed 3 July 2019].

Lizzi, F. and Vitale, P., 2014. Matrix Bases for Star Products: a Review. Symmetry, Integrability and Geometry: Methods and Applications [Online]. arXiv: 1403.0808 [hep-th]. Available at: https://doi.org/10.3842/SIGMA.2014.086 [Accessed 3 July 2019].

Messiah, A., 1961. Quantum Mechanics Volume I. Amsterdam: North Holland Publishing Company.

Moyal, J.E., 1949. Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45(1), pp.99–124. Available at: https://doi.org/10.1017/S0305004100000487.

Pauli, W., 1985. Letter of Heisenberg to Peirels (1930). In: Meyenn, K.v., Hermann, A. and Weisskopf, V.F. eds. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u. a. - Scientific correspondence with Bohr, Einstein, Heisenberg a. o. Bd. 2: 1930-1939, Sources in the History of Mathematics and Physical Sciences 6. Berlin: Springer-Verlag, p.15.

Perelomov, A., 1986. Generalized Coherent States and Their Applications. Berlin, Heidelberg: Springer-Verlag. Available at: https://doi.org/10.1007/978-3-642-61629-7.

Sakharov, A., 1968. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, p.1040.

Seiberg, N. and Witten, E., 1999. String theory and noncommutative geometry. Journal of High Energy Physics [Online], 1999(09), pp.032–032. arXiv: hep-th/9908142. Available at: https://doi.org/10.1088/1126-6708/1999/09/032 [Accessed 3 July 2019].

Strominger, A., 2017. Lectures on the Infrared Structure of Gravity and Gauge Theory [Online]. arXiv: 1703.05448 [hep-th]. [Accessed 3 July 2019].

Suijlekom, W.v., 2015. Noncommutative Geometry and Particle Physics, Mathematical Physics Studies. Springer Netherlands.

Tanasa, A. and Vitale, P., 2010. Curing the UV/IR mixing for field theories with translation-invariant star products. Physical Review D, 81(6), p.065008. Available at: https://doi.org/10.1103/PhysRevD.81.065008.

Vassilevich, D.V., 2003. Heat kernel expansion: user’s manual. Physics Reports [Online], 388(5-6), pp.279–360. arXiv: hep-th/0306138. Available at: https://doi.org/10.1016/j.physrep.2003.09.002 [Accessed 3 July 2019].

Weinberg, S., 1995. The quantum theory of fields. Vol. 1: Foundations. Cambridge: Cambridge University Press.