Ehrenfest’s Theorem revisited

Main Article Content

Henryk Stanisław Arodź

Abstract

Historically, Ehrenfest’s theorem (1927) is the first one which shows that classical physics can emerge from quantum physics as a kind of approximation. We recall the theorem in its original form, and we highlight its generalizations to the relativistic Dirac particle and to a particle with spin and izospin. We argue that apparent classicality of the macroscopic world can probably be explained within the framework of standard quantum mechanics.

Article Details

How to Cite
Arodź, H. S. (2019). Ehrenfest’s Theorem revisited. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (66), 73–94. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/463
Section
Emergence of the Classical

References

Arodź, H., 1982. Colored, spinning classical particle in an external non-abelian gauge field. Physics Letters B, 116(4), pp.251–254. Available at: https://doi.org/10.1016/0370-2693(82)90336-7.

Arodź, H. and Ruijgrok, T., 1988. On a Classical Limit of the Dirac Equation with an External Electromagnetic Field. Part I. Proper-Time Evolution, Lorentz Covariant Expectation Values and Classical Equations of Motion. Acta Physica Polonica B [Online], 19(2), pp.99–140. Available at: <http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=19&page=99> [Accessed 21 May 2019].

Białynicki-Birula, I., Cieplak, M. and Kamiński, J., 1991. Teoria kwantów: mechanika falowa [Quantum Theory: Wave Mechanics], Biblioteka Fizyki t. 13. Warszawa: Wydawnictwo Naukowe PWN.

Curtright, T., Fairlie, D. and Zachos, C., 2014. A Concise Treatise on Quantum Mechanics in Phase Space. New Jersey: World Scientific.

Ehrenfest, P., 1927. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Zeitschrift für Physik, 45(7), pp.455–457. Available at: https://doi.org/10.1007/BF01329203.

Ghirardi, G.C., Pearle, P. and Rimini, A., 1990. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Physical Review A, 42(1), pp.78–89. Available at: https://doi.org/10.1103/PhysRevA.42.78.

Heller, M., 2018. What does it mean ‘to exist’ in physics? Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (65), pp.9–22. Available at: <http://zfn.edu.pl/index.php/zfn/article/view/436> [Accessed 28 June 2019].

Hilgevoord, J. and Wouthuysen, S.A., 1963. On the spin angular momentum of the Dirac particle. Nuclear Physics, 40, pp.1–12. Available at: https://doi.org/10.1016/0029-5582(63)90246-3.

Landau, L.D. and Lifshitz, E.M., 1971. The Classical Theory of Fields [Online] (M. Hamermesh. Trans.). Third Edition, Course of Theoretical Physics 2. Oxford ; New York et al.: Pergamon Press. Available at: <http://archive.org/details/TheClassicalTheoryOfFields>.

Rosen, G., 1969. Formulations of Classical and Quantum Dynamical Theory, Mathematics in science and engineering v. 60. New York: Academic Press.

Schiff, L.I., 1968. Quantum Mechanics. Third Edition [Online]. New York [etc.]: McGraw-Hill. Available at: <http://archive.org/details/QuantumMechanics_500> [Accessed 28 June 2019].

Siegel, W., 1976. On the classical limit of quantum mechanics. Acta Physica Polonica B [Online], 7(1), pp.29–38. Available at: <http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=7&page=29> [Accessed 21 May 2019].

Wong, S.K., 1970. Field and particle equations for the classical Yang-Mills field and particles with isotopic spin. Il Nuovo Cimento A, 65(4), pp.689–694. Available at: https://doi.org/10.1007/BF02892134.

Zeh, H.D., 1970. On the interpretation of measurement in quantum theory. Foundations of Physics, 1(1), pp.69–76. Available at: https://doi.org/10.1007/BF00708656.

Zurek, W.H., 2003. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3). Available at: https://doi.org/10.1103/RevModPhys.75.715.

Zurek, W.H., 2009. Quantum Darwinism. Nature Physics, 5(3), pp.181–188. Available at: https://doi.org/10.1038/nphys1202.