On the Scientific and Philosophical Implications of the Missing Mass Problem

Main Article Content

Tadeusz Pabjan


The article deals with the so called missing mass problem which during the last three decades has become one of the most serious difficulties in physics. There is some strong empirical evidence that the Universe contains not only matter that can be seen (by telescopes or radio telescopes) but the huge quantities of the unseen matter as well. The ordinary matter known to physics is but a small part of all matter the Universe is composed of. The missing mass is supposed to be in the form of the dark matter and the dark energy. In the paper the arguments in favor of the existence of these two entities are outlined, and some scientific as well as philosophical implications of the missing mass problem are discussed. It is argued that all the proposed solutions of this problem lead to serious changes in the scientific and philosophical worldview.

Article Details

How to Cite
Pabjan, T. (2014). On the Scientific and Philosophical Implications of the Missing Mass Problem. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (54), 5–37. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/44


Ade P.A.R. i in., (Planck Collaboration), 22 March2013, Planck 2013 Results. Cosmological Parameters, arXiv:1303.5076v1, 20 III 2013, dostęp: 20 XI 2013.

Babcock H.W., The Rotation of the Andromeda Nebula, „Lick Observatory Bulletin” 1939, 498, s. 41–51.

Bertone G. (red.), Particle Dark Matter: Observations, Models and Searches, Cambridge University Press, Cambridge 2010.

Bolejko K., Célérier M.N., Krasiński A., Inhomogeneous Cosmological Models: Exact Solutions and their Applications”, „Classical and Quantum Gravity” 2011, 28, s. 164002(1–30).

Bosma A., The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types, Groningen 1978.

Copi C.J., Schramm D.N., Turner M.S., Big-Bang Nucleosynthesis and the Baryon Density of the Universe, „Science” 1995, 267, s. 192–199.

Einasto J., Dark Matter, arXiv:0901.0632v2, 19 X 2010, dostęp: 23 XI 2013.

Freeman K.C., On the Disks of Spiral and S0 Galaxies, „The Astrophysical Journal” 1970, 160, s. 811–830.

Glanz J., Astronomers See a Cosmic Antigravity Force at Work, „Science” 1998, 279, s. 1298–1299.

Heller M., Naukowy obraz świata a zadanie teologa, [w:] Obrazy świata w teologii i naukach przyrodniczych, red. M. Heller, S. Budzik, S. Wszołek, Biblos, Tarnów 1996, s. 13–27.

Heller M., Ewolucja pojęcia masy, „Analecta Cracoviensia” 1982, 14, s. 79–91.

Jeans J.H., The Motion of Stars in a Kapteyn Universe, „Monthly Notices of the Royal Astronomical Society” 1922, 82, s. 122–132.

Jedamzik K., Pospelov M., Particle Dark Matter and Big Bang Nucleosynthesis, [w:] Particle Dark Matter: Observations, Models and Searches, red. G. Bertone, Cambridge University Press, Cambridge 2010, s. 565–585.

Kapteyn J.C., First Attempt at a Theory of the Arrangement and Motion of the Sidereal System, „The Astrophysical Journal” 1922, 55, s. 302–328.

Kragh H., Conceptions of Cosmos. From Myths to Accelerating Universe: A History of Cosmology, Oxford University Press, Oxford 2007.

Krasiński A., Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge 1997.

Lubański M., Uwagi w sprawie tzw. naukowego obrazu świata, [w:] Obrazy świata w teologii i naukach przyrodniczych, red. M. Heller, S. Budzik, S. Wszołek, Biblos, Tarnów 1996, s. 28– 42.

Milgrom M., A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, „The Astrophysical Journal” 1983, 270, s. 365–370.

Newton I., Matematyczne zasady filozofii przyrody, tłum. J. Wawrzycki, Copernicus Center Press, Kraków 2011.

Oort J.H., The Force Exerted by the Stellar System in the Direction Perpendicular to the Galactic Plane and Some Related Problems, „Bulletin of the Astronomical Institutes of the Netherlands” 1932, 6, s. 249–287.

Öpik E., Selective Absorption of Light in Space, and the Dynamics of the Universe, „Bulletin de la Société Astronomique de Russie” 1915, 21, s. 150–158.

Paczyński B., Gravitational Microlensing by the Galactic Halo, „The Astrophysical Journal” 1986, 304, s. 1–5.

Panek R., Ciemna strona Wszechświata. W poszukiwaniu brakujących składników rzeczywistości, Prószyński i S-ka, Warszawa 2011.

Riess G. i in., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, „The Astronomical Journal” 1998, 16, s. 1009–1038.

Rubin V.C. i in., Kinematic Studies of Early-Type Stars, I: Photometric Survey, Space Motions, and Comparison with Radio Observations, „Astronomical Journal” 1962, 67, s. 491–531.

Rubin V.C., Ford W.K., Thonnard J.N., Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosity and Radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), „The Astrophysical Journal” 1980, 238, s. 471–487.

Sciama D.W., Modern Cosmology and the Dark Matter Problem, Cambridge University Press, Cambridge 1993.

Smith S., The Mass of the Virgo Cluster, „The Astrophysical Journal” 1936, 83, s. 23–30.

Taoso M., Bertone G., Masiero A., Dark Matter Candidates: A Ten- Point Test, arXiv:0711.4996v2, 25 I 2008, dostęp: 20 XI 2013.

Tremaine S., A Historical Perspective on Dark Matter, [w:] Dark Matter in the Universe. Proceedings of the IAU Symposium, Princeton, NJ, June 24–28, 1985, red. J. Kormendy, G.R. Knapp, Reidel, Dordrecht 1987, s. 547–565.

Zwicky F., Die Rotveschiebung von extragalaktischen Nebeln, „Helvetica Physica Acta” 1933, 6, s. 110–127.

Życiński J., Metafizyka i wyobraźnia w przyrodniczym obrazie świata, [w:] Obrazy świata w teologii i naukach przyrodniczych, red. M. Heller, S. Budzik, S. Wszołek, Biblos, Tarnów 1996, s. 78–93.