The Origin of Intuitionistic Propositional Calculus and Glivenko’s Theorem

Main Article Content

Piotr Urbańczyk


Among the non-classical logics, the intuitionistic one stands out in many ways. First of all, because of its properties, it is grateful subject of formal analysis. Moreover, there is small, but very significant group of mathematicians and philosophers who claim that intuitionistic logic captures the reasoning utilized in mathematics better than classical one. This article reveals the origins of intuitionistic propositional calculus – it was an outcome of formalization of certain ideas about foundations of mathematics. A large part of the article is devoted to Glivenko’s Theorem – somewhat forgotten, but extremely interesting formal result regarding the relationship between the two logical calculi: classical and intuitionistic propositional logic.

Article Details

How to Cite
Urbańczyk, P. (2014). The Origin of Intuitionistic Propositional Calculus and Glivenko’s Theorem. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (56), 33–56. Retrieved from


Atten M. van, The Development of Intuitionistic Logic, [w:] The Stanford Encyclopedia of Philosophy (Summer 2009 Edition), (red.) E.N. Zalta, .

Dalen D. van, Intuitionistic Logic, [w:] Handbook of Philosophical Logic, (red.) D.M. Gabbay, F. Guenther, wyd. 2, vol. 5, Springer, Dordrecht 2002.

Dummett M., Elements of Intuitionism, Clarendon Press, Oxford 2000.

Heyting A., Intuitionism: An Introduction, North-Holland Publishing Company, Amsterdam 1956.

Kleene S.C., Introduction to Metamathematics, North-Holland Publishing Company, Amsterdam 1952.

Moschovakis J., Intuitionistic Logic, [w:] The Stanford Encyclopedia of Philosophy (Summer 2010 Edition), (red.) E.N. Zalta, .

Murawski R., Filozofia matematyki. Zarys dziejów, wyd. 2, Wydawnictwo Naukowe PWN, Warszawa 2001.

Olszewski A., O rozumieniu implikacji w klasie logik porządku i jego znaczeniu w dążeniu do pewności językowej, Wydawnictwo Naukowe PAT, Kraków 1997.

Pogorzelski A., Elementarny słownik logiki formalnej, Dział Wydawnictw Filii UW, Białystok 1992.

Priest G., An Introduction to Non-Classical Logic. From If to Is, wyd. 2, Cambridge University Press, New York 2008.

Rasiowa H., Sikorski R., The Mathematics of Mathematics, PWN, Warszawa 1970.

Troelstra A.S., History of constructivism in the twentieth century, ITLI Prepublication Series ML–1991–05, Amsterdam 1991.

Woleński J., Semantic Loops, [w:] Philosophy in Science. Methods and Aplications, (red.) B. Brożek, J. Mączka, W. Grygiel, Copernicus Center Press, Kraków 2011.

Zawirski Z., Geneza i rozwój logiki intuicjonistycznej, „Kwartalnik Filozoficzny” 1939, 16, s. 165–222.