Weak ergodicity breaking vs. determinism of physical processes

Main Article Content

Andrzej Fuliński


All physical processes are deterministic de iure. Physicists speak about different types of determinism of physical processes, depending on the degree with which their course can be anticipated. Usually, the course of ergodic processes can be predicted with less certainty than the non-ergodic ones, the latter being integrable. Recent measurements of motions of single particles in composite systems, especially in living biological cells, show that such motions are, in most cases, breaking the Boltzmann’s ergodic hypothesis. On the other hand, their trajectories are random, i.e., one cannot know a priori where the particle will be even in near future. This leads to conclusion that many existing in nature processes are nonergodic but not integrable, therefore predictable only in the mean, representing still other type of determinism.

Article Details

How to Cite
Fuliński, A. (2015). Weak ergodicity breaking vs. determinism of physical processes. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (59), 83–100. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/182


Fuliński, A., 1993. O chaosie i przypadku, a także o determinizmie, redukcjonizmie i innych grzechach fizyków czyli o zmianach w obrazie świata widzianych okiem jednego z nich. Znak, XLV(456(5)), ss. 31–49.

Fuliński, A., 2005. Determinizmy fizyki vs. wolna wola człowieka. Nauka, (1), ss. 67–74.

Gal, N. i Weihs, D., 2010. Experimental evidence of strong anomalous diffusion in living cells. Physical Review E, 81(2), 020903.

Goldstein, S., Lebowitz, J.L., Tumulka, R. i Zanghi, N., 2010. Longtime behavior of macroscopic quantum systems: commentary accompanying the english translation of John von Neumann’s 1929 article on the quantum ergodic theorem. The European Physical Journal H, 35(2), ss. 173–200; arXiv: 1003.2129.

Jeon, J.-H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L. i Metzler, R., 2011. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Physical Review Letters, 106, 048103.1–048103.4.

Kepten, E., Bronshtein, I. i Garini, Y., 2011. Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Physical Review E, 83(4), 041919.

Leijnse, N., Jeon, J.-H., Loft, S., Metzler, R. i Oddershede, L.B., 2012. Diffusion inside living human cells. The European Physical Journal Special Topics, 204(1), ss. 75–84.

von Neumann, J., 1929. Beweis des Ergodensatzes und des H-theorems in der neuen Mechanik. Zeitschrift für Physik, 57(1–2), ss. 30–70 (tłum ang.: von Neumann, J., 2010. Proof of the ergodic theorem and the H-theorem in quantum mechanics. The European Physical Journal H, 35(2), ss. 201–237; arXiv:1003.2133v2).

Weigel, A.V., Simon, B., Tamkun, M.M. i Krapf, D., 2011. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108(16), ss. 6438–6443.

Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R. i Weitz, D.A., 2004. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Physical Review Letters, 92(17), 178101.