On Euclid’s 'Elements' Book V, Definition 7

Main Article Content

Piotr Błaszczyk

Abstract

Euclid's 'Elements' Book V develops theory of proportion of 'geometric magnitudes'. Definition V,5 is the definition of proportion, A:B::C:D, definition V,7 is the definition of the order of ratios, A:B - C:D. In commentaries on Book V it is usually supposed, and sometimes even proved, that the order of ratios is a total order, while it is also supposed that 'magnitudes of the same kind' obey the Archimedean axiom only, i.e. Euclid's definition V,4. The purpose of this paper is to show that the linearity of the order of ratios cannot be deduced from the Archimedean axiom; to this end we define a structure of magnitudes that obeys the Archimedean axiom and show that the conjunction of negations is satisfied (for mathematical symbols applied see the original paper).

Article Details

Section
Articles

References

Acerbi Fabio (2003), Drowning by Multiples. Remarks on the Fifth Book of Euclid’s Elements, with Special Emphasis on Prop. 8, „Archive for History of Exact Sciences” 57, 2003, s. 175–242.

Archimedes, On the Sphere and Cylinder, w: [Heath 1912].

Artman Benno (2001), Euclid: The Creation of Mathematics, Springer, New York 2001.

Beckmann Friedhelm (1967), Neue Gesichtspunkte zum 5. Buch Euklids, Archive for History of Exact Sciences IV, 1967, s. 1–144.

Błaszczyk Piotr (2007a), Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Wydawnictwo Naukowe AP, Kraków 2007.

Błaszczyk Piotr (2007b), Eudoxos versus Dedekind, „Filozofia Nauki” 2 (58), 2007, s. 95–113.

Błaszczyk Piotr (2006), O definicji 5 z Księgi V Elementów Euklidesa, „Investigationes Linguisticae”, t. XIV, 2006, s. 120–146; http://www.inveling.amu.edu.pl.

Bourbaki Nicolas (1966), Historical Note, [w:] Elements of Mathematics. General Topology, t. I, Addison-Wesley Publishing Company, Reading Massachussetts 1966, s. 406–416.

Czech Józef (1817), Euklidesa początków geometryi ksiąg ośmioro, to iest sześć pierwszych, iedenasta i dwunasta z dodanemi przypisami dla pożytku młodzi akademickiej wytłumaczone przez Józefa Czecha. Po śmierci autora wydanie drugie z przydaną Trygonometryą Roberta Simsona przełożoną z angielskiego i figurami na miedzi rzniętymi tablic 10, nakładem i drukiem Iózefa Zawadzkiego Typografa Imperatorskiego Wileńskiego Uniwer., Wilno 1817 (reprint: Wydawnictwo Artystyczne i Filmowe, Warszawa 1981).

Euklides, Elementy, w: [Heath 1926]. Grattan-Guiness Ivor (1996), Numbers, Magnitudes, Ratios, and Proportions in Euclid’s Elements: How Did He Handle Them, „Historia Mathematica” 23, 1996, s. 355–375.

Goldblatt Robert (1998), Lectures on the Hyperreals, Springer, New York 1998.

Hale B. (2000), Reals by Abstraction, „Philosophia Mathematica” 8.

Heath Thomas L. (1926), Euclid. The Thirteen Books of The Elements, t. I–III, translated from the text of Heiberg with introduction and commentary by Sir Thomas L. Heath, Dover, New York 1956 (reprint wydania: Cambridge University Press, Cambridge, 1926).

Heath Thomas L. (1912), The Works of Archimedes. Edited in Modern Notation with Introductory Chapters by T.L. Heath with a Supplement The Method of Archimedes. Recently Discovered by Heiberg, Dover, New York 1953 (reprint wydania: Cambridge University Press, Cambridge, 1912).

Joyce David E. (1997), Euclid’s Elements, http://aleph0.clarku.edu/ ˜djoyce/java/elements/elements.html.

Knorr Wilbur R. (1975), The Evolution of the Euclidean Elements, D. Reidel Publishing Company, Dordrecht 1975.

Mueller Ian (1981), Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, Dover, New York 2006 (reprint wydania: MIT Press, Cambridge, Massachusetts 1981).

Penrose Roger, Droga do rzeczywistości, tł J. Przystawa, Prószyńska i S-ka, Warszawa 2004.

van der Waerden Bartel L., Science Awaking, tł. A. Dreseden, Noordhoff, Groningen 1954.