Between obviousness and deduction. Plato and Euclid on equality

Main Article Content

Piotr Błaszczyk
Kazimierz Mrówka

Abstract

We confront Plato's understanding of equality in geometry with that of Euclid. We comment on Phaedo, 74b-c, Meno, 81e-85d and Elements, Book I. We distinguish between two meanings of equality, congruence and equality of the area, and show that in Plato equality means congruence. In Euclid, starting with the first definitions until Proposition I.34, equality means congruence. In the proof of Proposition I.35 equality gains a new meaning and two figures that are not congruent, and in this sense unequal, are considered to be equal. While Plato's geometry is based on self-evident facts, Euclid's geometry rests on deduction and the axioms that are by no means self-evident. However, the shift of meaning from congruence to equality of the area can be substantiated by reference to Euclid's axioms of equality. Finally, we present an ontological interpretation of the two attitudes to equality that we find in Plato's and Euclid's writings.

Article Details

How to Cite
Błaszczyk, P., & Mrówka, K. (2011). Between obviousness and deduction. Plato and Euclid on equality. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (48), 127–147. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/143
Section
Articles

References

Artman B., Euclid: The Creation of Mathematics, Springer, New York 2001.

Błaszczyk P., Parada rowności, czyli anty-Platon, Konspekt 37, 2010, s. 47–50.

Błaszczyk P., O definicji 7 z Księgi V ‘Elementow’ Euklidesa, Zagadnienia Filozoficzne w Nauce 46, 2010, s. 117–139.

Błaszczyk P., Analiza filozoficzna rozprawy Richarda Dedekinda „Stetigkeit und irrationale Zahlen”, Wydawnictwo Naukowe AP, Krakow 2007.

Borsuk K., Szmielew W., Podstawy geometrii, PWN, Warszawa 1972.

Cornford M.F., Plato and Parmenides, Routledge & Kegan Paul, London 1939.

Euclidis Elementa, (ed.) J.L. Heiberg, Teubner, Leipzig 1883–1885 (cytowane fragmenty w tłumaczeniu K. Mrowki i P. Błaszczyka).

Fowler D., Mathematics of Plato’s Academy. A New Reconstruction, Clarendon Press, Oxford 2003.

Fraenkel A., Bar-Hillel Y., Levy A., Foundations of Set Theory, NHPC, Amsterdam 1973.

Giaquinto M., Epistemology of the Obvious: a Geometrical Case, Philisophical Studies 92, 1998, s. 181–204.

Hartshorne R., Geometry: Euclid and Beyond, Springer, New York 2000.

Hilbert D., Grundlagen der Geometrie, Teubner, Leipzig 1930.

Jeleński Sz., Śladami Pitagorasa, WSiP, Warszawa 1988.

Klein J., A Commentary on Plato’s Meno, The University of Chicago Press, Chicago 1965.

Maor E., The Pythagorean Theorem, Princeton UP, Princeton, Oxford 2007.

Netz R., The Shaping of Deduction in Greek Mathematics, Cambridge UP, Cambridge 1999.

Norman J., After Euclid: Visual Reasoning & the Epistemology of Diagrams, CSLI Publications, Stanford, California 2006.

Platon, Fedon, tł. R. Legutko, ZNAK, Krakow 1995. Platon, Menon, tł. P. Siwek, PWN,Warszawa 1991.

Świderek J., Rozważania matematyczne w pismach Platona, Wydawnictwo UMCS, Lublin 2002.