Experimental mathematics – several remarks from historian of science

Main Article Content

Krzysztof Maślanka

Abstract

The paper deals with the ever growing role of computers in pure mathematics. Several examples, mainly from number theory, when numerical experiments did shed some light on difficult problems are given.

Article Details

How to Cite
Maślanka, K. (2015). Experimental mathematics – several remarks from historian of science. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (58), 115–150. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/10
Section
Articles

References

Baez-Duarte L., On Maslanka’s reprezentation for the Riemann zeta-function, arXiv:math/0307214v1 [mathNT] 16 Juni 2003.

Borwein J., Bailey D., Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2004.

Galar R., Krajobraz z komputerem, „Matematyka” 2010, 4.

Keiper J.B., Power Series Expansions of Riemann’s Zeta Function, „Mathematics of Computations” 1992, 58, 198.

Maślanka K., Ćwierć wieku od obalenia hipotezy Mertensa (1985). Refleksje na temat dowodu komputerowego, „Prace Komisji Filozofii Nauk Przyrodniczych PAU”, t. V, 2011.

Pólya G., Odkrycie matematyczne. O rozumieniu, uczeniu się i nauczaniu rozwiązywania zadań, tłum. A. Góralski, WNT, Warszawa 1975.

Schumayer D., Hutchinson D.A.W., Physics of the Riemann Hypothesis, arXiv:1101.3116v1 [math-ph] 17 Jan 2011.

Steuding J., Primzahlverteilung, wykład z teorii liczb w Uniwersytecie Goethego we Frankfurcie.

Thomas Jan Stieltjes, [w:] B. Baillaud, H. Bourget, Correspondance d’Hermite et Stieltjes, Gauthier–Villars, Paris 1905.

Voronin S.M., Theorem on the Universality of the Riemann Zeta Function, Izv. Akad. Nauk SSSR, Ser. Matem. 39, s. 475–486. Przedruk w „Math. USSR Izv.” 1975, 9.

Weinberg S., Newtonianism, Reductionism and the Art of Congressional Testimony, „Nature” 1987 (3 XII), 330.

Woon S.C., Riemann zeta function is a fractal, arXiv:chao-dyn/9406003 v1, 11 Jun 1994.