How many kingdoms of life? Eukaryotic phylogeny and philosophy of systematics

Main Article Content

Lukasz Lamza

Abstract

According to contemporary understanding of the universal tree of life, the traditionally recognized kingdoms of eukaryotic organisms—Protista, Fungi, Animalia and Plantae—are irregularly interspersed in a vast phylogenetic tree. There are numerous groups that in any Linnaean classification advised by phylogenetic relationships (i.e. a Hennigian system) would form sister groups to those kingdoms, therefore requiring us to admit them the same rank. In practice, this would lead to the creation of ca. 25-30 new kingdoms that would now be listed among animals and plants as “major types of life”. This poses problems of an aesthetic and educational nature. There are, broadly speaking, two ways to deal with that issue: a) ignore the aesthetic and educational arguments and propose classification systems that are fully consistent with the Hennigian principles of phylogenetic classification, i.e. are only composed of monophyletic taxa; b) ignore Hennigian principles and bunch small, relatively uncharacteristic groups into paraphyletic taxa, creating systems that are more convenient. In the paper, I present the debate and analyze the pros and cons of both options, briefly commenting on the deeper, third resolution, which would be to abandon classification systems entirely. Recent advances in eukaryotic classification and phylogeny are commented in the light of the philosophical question of the purpose and design principles of biological classification systems.

Article Details

Section
Proceedings of the PAU Commission on the Philosophy of Science

References

Adl, S.M., Simpson, A.G.B., Farmer, M.A. et al., 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. The Journal of Eukaryotic Microbiology [Online], 52(5), pp.399–451. Available at: https://doi.org/10.1111/j.1550-7408.2005.00053.x [Accessed 21 May 2019].

Adl, S.M., Simpson, A.G.B., Lane, C.E. et al., 2012. The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology [Online], 59(5), pp.429–493. Available at: https://doi.org/10.1111/j.1550-7408.2012.00644.x [Accessed 21 May 2019].

Baldauf, S.L., Roger, A.J., Wenk-Siefert, I. and Doolittle, W.F., 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290(5493), pp.972–977. Available at: https://doi.org/10.1126/science.290.5493.972.

Benton, M.J., 2014. Vertebrate Palaeontology. Fourth edition. Chichester, West Sussex; Hoboken, NJ: Wiley Blackwell.

Benton, M.J., 2000. Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews, 75(4), pp.633–648. Available at: https://doi.org/10.1111/j.1469-185X.2000.tb00055.x.

Bouchet, P. and Rocroi, J.-P., 2005. Classification and nomenclator of gastropod families. Malacologia: International Journal of Malacology, 47(1-2), pp.1–397. [Accessed 28 May 2019].

Bouchet, P., Rocroi, J.-P. et al., 2017. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. Malacologia, 61(1-2), pp.1–526. Available at: https://doi.org/10.4002/040.061.0201.

Cavalier-Smith, T., 1981. Eukaryote kingdoms: Seven or nine? Biosystems, 14(3), pp.461–481. Available at: https://doi.org/10.1016/0303-2647(81)90050-2.

Cavalier-Smith, T., 1998. A revised six-kingdom system of life. Biological Reviews, 73(3), pp.203–266. Available at: https://doi.org/10.1111/j.1469-185X.1998.tb00030.x.

Cavalier-Smith, T., 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology [Online], 52(2), pp.297–354. Available at: https://doi.org/10.1099/00207713-52-2-297 [Accessed 21 May 2019].

Cavalier-Smith, T., 2013. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49(2), pp.115–178. Available at: https://doi.org/10.1016/j.ejop.2012.06.001.

Cavalier-Smith, T., 2016. Higher classification and phylogeny of Euglenozoa. European Journal of Protistology [Online], 56, pp.250–276. Available at: https://doi.org/10.1016/j.ejop.2016.09.003 [Accessed 28 May 2019].

Chase, M.W. et al., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society [Online], 181(1), pp.1–20. Available at: https://doi.org/10.1111/boj.12385 [Accessed 28 May 2019].

Copeland, H.F., 1938. The Kingdoms of Organisms. The Quarterly Review of Biology [Online], 13(4), pp.383–420. Available at: [Accessed 28 May 2019].

Edmunds Jr, G., 1973. Some critical problems of family relationships in the Ephemeroptera. In: Peters, W. and Peters, J. eds. Proceedings of the First International Conference on Ephemeroptera. Florida Agriculture and Mechanical University, August 17-20, 1970. Leiden: Brill, pp.145–154.

Haeckel, E., 1866. Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie. 2. bd. Allgemeine entwickelungsgeschichte der organismen [Online]. Berlin: Verlag von G. Reimer. Available at: .

He, D. et al., 2014. An alternative root for the eukaryote tree of life. Current Biology [Online], 24(4), pp.465–470. Available at: https://doi.org/10.1016/j.cub.2014.01.036 [Accessed 28 May 2019].

Hennig, W., 1966. Phylogenetic Systematics (D. Davis and R. Zangerl. Trans.). Chicago, Ill.: University of Illinois Press.

Hull, D.L., 1965. The effect of essentialism on taxonomy—two thousand years of stasis (I). The British Journal for the Philosophy of Science, 15(60), pp.314–326. Available at: https://doi.org/10.1093/bjps/XV.60.314.

Hull, D.L., 1970. Contemporary systematic philosophies. Annual Review of Ecology and Systematics, 1(1), pp.19–54. Available at: https://doi.org/10.1146/annurev.es.01.110170.000315.

Keeling, P.J. et al., 2005. The tree of eukaryotes. Trends in Ecology & Evolution, 20(12), pp.670–676. Available at: https://doi.org/10.1016/j.tree.2005.09.005.

Linnaeus, C., 1788. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (vol. 9) [Online]. Lipsiae [Leipzig]: Impensis Georg Emanuel Beer, Available at: .

Margulis, L. and Chapman, M.J., 2009. Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth. 4th ed. London: Academic Press.

Mayr, E. and Bock, W.J., 2002. Classifications and other ordering systems. Journal of Zoological Systematics and Evolutionary Research, 40(4), pp.169–194. Available at: https://doi.org/10.1046/j.1439-0469.2002.00211.x.

McKenna, M.C. and Bell, S.K., 1997. Classification of Mammals: Above the Species Level. New York: Columbia University Press.

Nelson, G.J., 1972. Phylogenetic relationship and classification. Systematic Biology, 21(2), pp.227–231. Available at: https://doi.org/10.1093/sysbio/21.2.227.

Patterson, D.J., 1999. The diversity of Eukaryotes. The American Naturalist, 154(S4), S96–S124. Available at: https://doi.org/10.1086/303287.

Pawlowski, J., 2013. The new micro-kingdoms of eukaryotes. BMC Biology [Online], 11(1), p.40. Available at: https://doi.org/10.1186/1741-7007-11-40 [Accessed 28 May 2019].

Peters, W. and Peters, J., eds., 1973. Proceedings of the First International Conference on Ephemeroptera. Florida Agriculture and Mechanical University, August 17-20, 1970. Leiden: Brill.

Petitjean, C., Deschamps, P., López-García, P. and Moreira, D., 2014. Rooting the domain Archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biology and Evolution [Online], 7(1), pp.191–204. Available at: https://doi.org/10.1093/gbe/evu274 [Accessed 28 May 2019].

Ruggiero, M.A. et al., 2015. A Higher Level Classification of All Living Organisms. PLOS ONE [Online], 10(4), e0119248. Available at: https://doi.org/10.1371/journal.pone.0119248 [Accessed 28 May 2019].

Schuh, R.T. and Brower, A.V.Z., 2011. Biological Systematics: Principles and Applications. Ithaca, NY: Cornell University Press. Available at: https://doi.org/10.7591/9780801462436.

Swartz, B., 2012. A marine stem-tetrapod from the Devonian of western North America. PLOS ONE [Online], 7(3), e33683. Available at: https://doi.org/10.1371/journal.pone.0033683 [Accessed 28 May 2019].

Tedersoo, L., 2017. Proposal for practical multi-kingdom classification of eukaryotes based on monophyly and comparable divergence time criteria. bioRxiv [Online], p.240929. Available at: https://doi.org/10.1101/240929 [Accessed 28 May 2019].

Tedersoo, L. et al., 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity [Online], 90(1), pp.135–159. Available at: https://doi.org/10.1007/s13225-018-0401-0 [Accessed 28 May 2019].

Whittaker, R.H., 1969. New concepts of kingdoms of organisms. Science, 163(3863), pp.150–160. Available at: https://doi.org/10.1126/science.163.3863.150.

Wiley, E., 1981. Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York: John Wiley.

Williams, D.M. and Kociolek, J.P., 2007. Pursuit of a natural classification of diatoms: History, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology [Online], 42(3), pp.313–319. Available at: https://doi.org/10.1080/09670260701419921 [Accessed 28 May 2019].

Williams, T.A., Foster, P.G., Cox, C.J. and Embley, T.M., 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504(7479), pp.231–236. Available at: https://doi.org/10.1038/nature12779.

Woese, C.R., Kandler, O. and Wheelis, M.L., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences [Online], 87(12), pp.4576–4579. Available at: https://doi.org/10.1073/pnas.87.12.4576 [Accessed 28 May 2019].

Woese, C.R. and Fox, G.E., 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences [Online], 74(11), pp.5088–5090. Available at: https://doi.org/10.1073/pnas.74.11.5088 [Accessed 28 May 2019].