Does the quantum mechanical wave function exist?

Main Article Content

Claus Kiefer

Abstract

I address the question whether the wave function in quantum theory exists as a real (ontic) quantity or not. For this purpose, I discuss the essentials of the quantum formalism and emphasize the central role of the superposition principle. I then explain the measurement problem and discuss the process of decoherence. Finally, I address the special features that the quantization of gravity brings into the game. From all of this I conclude that the wave function really exists, that is, it is a real (ontic) feature of Nature.

Article Details

Section
Articles

References

Anastopoulos, C. and Hu, B.-L., 2018. Comment on “A Spin Entanglement Witness for Quantum Gravity” and on “Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity” [Online]. arXiv: 1804.11315 [quant-ph].

Bassi, A. et al., 2013. Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 85(2), pp.471–527. Available at: https://doi.org/10.1103/RevModPhys.85.471.

Boge, F.J., 2018. Quantum Mechanics Between Ontology and Epistemology, European Studies in Philosophy of Science. Cham: Springer International Publishing.

Clarke, J. and Vanner, M.R., 2018. Growing macroscopic superposition states via cavity quantum optomechanics. Quantum Science and Technology [Online], 4(1), p.014003. Available at: https://doi.org/10.1088/2058-9565/aada1d [Accessed 17 May 2019].

d’Espagnat, B., 1995. Veiled Reality: An Analysis of Present-day Quantum Mechanical Concepts. Reading, Mass.: Addison-Wesley.

De Witt, C.M., ed., 1957. Proceedings: Conference on the Role of Gravitation in Physics, Chapel Hill, North Carolina, Jan 18-23, 1957 [Online], WADC Technical Report 57-216 (unpublished). Available at: [Accessed 21 June 2019].

Deng, Y.-H. et al., 2019. Quantum interference between light sources separated by 150 million kilometers [Online]. arXiv: 1905.02868 [quant-ph].

Einstein, A., Podolsky, B. and Rosen, N., 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), pp.777–780.

Haroche, S., 2014. Controlling photons in a box and exploring the quantum to classical boundary. International Journal of Modern Physics A, 29(10), p.1430026. Available at: https://doi.org/10.1142/S0217751X14300269.

Hylleraas, E.A., 1929. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Zeitschrift für Physik, 54, pp.347–366. Available at: https://doi.org/10.1007/BF01375457.

Joos, E. and Zeh, H.D., 1985. The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59, pp.223–243. Available at: https://doi.org/10.1007/BF01725541.

Joos, E., Zeh, H.D. et al., 2003. Decoherence and the Appearance of a Classical World in Quantum Theory. 2nd ed. Berlin, Heidelberg: Springer.

Kiefer, C., 2012a. Emergence of a classical Universe from quantum gravity and cosmology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences [Online], 370(1975), pp.4566–4575. Available at: https://doi.org/10.1098/rsta.2011.0492 [Accessed 17 May 2019].

Kiefer, C., 2012b. Quantum Gravity. Third Edition, International Series of Monographs on Physics. Oxford, New York: Oxford University Press.

Kiefer, C., ed., 2015a. Albert Einstein, Boris Podolsky, Nathan Rosen: Kann die quantenmechanische Beschreibung der physikalischen Realität als vollständig betrachtet werden?, Klassische Texte der Wissenschaft. Berlin: Springer Spektrum.

Kiefer, C., 2015b. Does time exist in quantum gravity? Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce) [Online], (59), pp.7–24. Available at: [Accessed 17 May 2019].

Marletto, C. and Vedral, V., 2017. Witness gravity’s quantum side in the lab. Nature News [Online], 547(7662), pp.156–158. Available at: https://doi.org/10.1038/547156a [Accessed 17 May 2019].

Neumann, J. von, 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

Schlosshauer, M.A., 2007. Decoherence: and the Quantum-To-Classical Transition, The Frontiers Collection. Berlin: Springer.

Schmöle, J., Dragosits, M., Hepach, H. and Aspelmeyer, M., 2016. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses. Classical and Quantum Gravity [Online], 33(12), p.125031. Available at: https://doi.org/10.1088/0264-9381/33/12/125031 [Accessed 20 May 2019].

Schrödinger, E., 1935. Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), pp.555–563. Available at: https://doi.org/10.1017/S0305004100013554.

Zeh, H.D., 1970. On the interpretation of measurement in quantum theory. Foundations of Physics, 1(1), pp.69–76. Available at: https://doi.org/10.1007/BF00708656.

Zeh, H.D., 2007. The Physical Basis of The Direction of Time. 5th ed., The Frontiers Collection. Berlin, Heidelberg: Springer.

Zeh, H.D., 2016. The strange (hi)story of particles and waves. Zeitschrift für Naturforschung A, 71(3), pp.195–212. Available at: https://doi.org/10.1515/zna-2015-0509.

Zurek, W.H., 2003. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), pp.715–775. Available at: https://doi.org/10.1103/RevModPhys.75.715.

Zurek, W.H., 2018. Quantum theory of the classical: quantum jumps, Born’s Rule and objective classical reality via quantum Darwinism. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123), p.20180107. Available at: https://doi.org/10.1098/rsta.2018.0107.