Galileo’s paradox and numerosities

Main Article Content

Piotr Błaszczyk
https://orcid.org/0000-0002-3501-3480

Abstract

Galileo's paradox of infinity involves comparing the set of natural numbers, N, and the set of squares, {n2 : n ∈ N}. Galileo (1638) sets up a one-to-one correspondence between these sets; on this basis, the number of the elements of N is considered to be equal to the number of the elements of {n2 : n ∈ N}. It also characterizes the set of squares as smaller than the set of natural numbers, since ``there are many more numbers than squares". As a result, it concludes that infinities cannot be compared in terms of greater--lesser and the law of trichotomy does not apply to them.


Cantor's cardinal numbers provide a measure for sets. Cantor (1897) gives a definition of the relation greater–lesser between cardinal numbers and establishes the law of trichotomy for these numbers. Yet, when Cantor's theory is applied to subsets of N, it gives that any set can be either finite or of the power ℵ0. Thus, although the set of squares is the subset of N, they are of the same cardinality.


Benci, Di Nasso (2019) introduces specific numbers to measure sets called numerosities. With numerosities, the following claim is true: numerosity of A < numerosity of B, whenever AB.


In this paper, we present a simplified version of the theory of numerosities that applies to subsets of N. This theory complies with Galileo's presupposition that when AB, then the number of elements in A is smaller than the number of elements in B. Specifically, we show that as the numerosity of N is the number α, the numerosity of the set of squares is the integer part of the number α, that is ⌊α⌋, and the inequality ⌊α⌋ < α holds.

Article Details

How to Cite
Błaszczyk, P. (2021). Galileo’s paradox and numerosities. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (70), 73–107. Retrieved from https://zfn.edu.pl/index.php/zfn/article/view/527
Section
Articles

References

Benci, V., Bottazzi, E. and Di Nasso, M., 2014. Elementary numerosity and measures. Journal of Logic and Analysis [Online], 6, pp.1–14. Available at: https://doi.org/10.4115/jla.2014.6.3 [visited on 6 September 2021].

Benci, V., Bottazzi, E. and Di Nasso, M., 2015. Some applications of numerosities in measure theory. Rendiconti Lincei – Matematica e Applicazioni [Online], 26(1), pp.37–47. Available at: https://doi.org/10.4171/RLM/690 [visited on 6 September 2021].

Benci, V. and Di Nasso, M., 2003. Numerosities of labelled sets: a new way of counting. Advances in Mathematics [Online], 173(1), pp.50–67. Available at: https://doi.org/10.1016/S0001-8708(02)00012-9 [visited on 6 September 2021].

Benci, V. and Di Nasso, M., 2019. How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers [Online]. World Scientific. Available at: https://doi.org/10.1142/7081.

Benci, V., Di Nasso, M. and Forti, M., 2006. An Aristotelian notion of size. Annals of Pure and Applied Logic [Online], 143(1-3), pp.43–53. Available at: https://doi.org/10.1016/j.apal.2006.01.008 [visited on 6 September 2021].

Benci, V., Di Nasso, M. and Forti, M., 2007. An euclidean measure of size for mathematical universes. Logique et Analyse [Online], 50(197), pp.43–62. Available at: <https://www.jstor.org/stable/44084847> [visited on 6 September 2021].

Benci, V. and Forti, M., 2020. The Euclidean numbers. Arxiv:1702.04163v3 [math] [Online]. Available at: <http://arxiv.org/abs/1702.04163> [visited on 6 September 2021].

Błaszczyk, P., 2007. Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Prace Monograficzne / Akademia Pedagogiczna im. Komisji Edukacji Narodowej w Krakowie 479. Kraków: Wydawnictwo Naukowe Akademii Pedagogicznej.

Błaszczyk, P., 2016. A Purely Algebraic Proof of the Fundamental Theorem of Algebra. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia [Online], 8, pp.7–23. Available at: <https://didacticammath.up.krakow.pl/article/view/3638> [visited on 6 September 2021].

Błaszczyk, P., 2020. Modern, Ancient and Early Modern Alternatives to Cantor’s Theory of Infinite Numbers. What Theory of Infinity Should be Thought? Philosophy of Mathematics Education Journal, 36, pp.1–12.

Błaszczyk, P. and Fila, M., 2020. Cantor on Infinitesimals. Historical and Modern Perspective. Bulletin of the Section of Logic [Online], 49(2), pp.149–179. Available at: https://doi.org/10.18778/0138-0680.2020.09 [visited on 6 September 2021].

Błaszczyk, P. and Major, J., 2014. Calculus without the concept of limit. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia [Online], 6, pp.19–40. Available at: <https://didacticammath.up.krakow.pl/article/view/3654> [visited on 6 September 2021].

Błaszczyk, P., Mrówka, K. and Petiurenko, A., 2020. Decoding Book II of the Elements. Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia [Online], 12, pp.39–88. Available at: https://doi.org/10.24917/20809751.12.3 [visited on 6 September 2021].

Cantor, G., 1897. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen [Online], 49(2), pp.207–246. Available at: https://doi.org/10.1007/BF01444205 [visited on 6 September 2021].

Cantor, G., 1915. Contributions to the Founding of the Theory of Transfinite Numbers [Online] (P.E. Jourdain, Trans.). New York: Dover Publications, Inc. Available at: <https://www.maths.ed.ac.uk/~v1ranick/papers/cantor1.pdf> [visited on 6 September 2021].

Cohen, L.W. and Ehrlich, G., 1963. The Structure of the Real Number System, University Series in Undergraduate Mathematics. Princeton: D. Van Nostrand Co., Inc.

Dauben, J.W., 1990. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton: Princeton University Press.

Di Nasso, M. and Forti, M., 2010. Numerosities of point sets over the real line. Transactions of the American Mathematical Society [Online], 362(10), pp.5355–5371. Available at: https://doi.org/10.1090/S0002-9947-2010-04919-0 [visited on 6 September 2021].

Ehrlich, P., 2012. The Absolute Arithmetic Continuum and the Unification of all Numbers Great and Small. Bulletin of Symbolic Logic [Online], 18(1), pp.1–45. Available at: https://doi.org/10.2178/bsl/1327328438 [visited on 6 September 2021].

Euclid, 2008. Euclid’s elements of geometry: the Greek text of J.L. Heiberg (1883–1885): from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883-1885 [Online]. Ed. and trans. by R. Fitzpatrick. Revised and corrected. s.l: s.n. Available at: <http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf> [visited on 6 September 2021].

Euler, L., 1748. Introductio in analysin infinitorum [Online]. Marcus-Michael Bousquet & Soc. Available at: <https://scholarlycommons.pacific.edu/euler-works/101> [visited on 6 September 2021].

Galileo, 1638. Discorsi e dimostrazioni matematiche: intorno ŕ due nuoue scienze, attenenti alla mecanica & i movimenti locali...Con una appendice del centro di grauitŕ d’alcuni solidi [Online]. Leida: Appresso gli Elsevirii. Available at: <http://hdl.loc.gov/loc.rbc/Rosenwald.1430.1> [visited on 6 September 2021].

Galileo, 1956. Dialogues Concerning Two New Sciences (H. Crew and A.d. Salvio, Trans.), Dover Books on Physics. New York: Dover Publications.

Gödel, K., 1947. What is Cantor’s Continuum Problem? The American Mathematical Monthly [Online], 54(9), pp.515–525. Available at: https://doi.org/10.2307/2304666 [visited on 6 September 2021].

Goldblatt, R., 1998. Lectures on Hyperreals: An Introduction to Nonstandard Analysis, Graduate Texts in Mathematics 188. New York: Springer.

Hessenberg, G., 1906. Grundbegriffe der Mengenlehre. Göttingen: Vandenhoeck & Ruprecht.

Jech, T., 2003. Set theory. 3rd ed. millenium, rev. and expanded, Springer Monographs in Mathematics. Berlin: Springer-Verlag.

Kuratowski, K. and Mostowski, A., 1978. Teoria mnogości wraz ze wstępem do opisowej teorii mnogości. 5th ed., Monografie Matematyczne 27. Warszawa: Państwowe Wydawnictwo Naukowe.

Mancosu, P., 2009. Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic [Online], 2(4), pp.612–646. Available at: https://doi.org/10.1017/S1755020309990128 [visited on 6 September 2021].

Mancosu, P., 2016. Abstraction and Infinity. Oxford; New York: Oxford University Press.

Robinson, A., 1966. Non-Standard Analysis, Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.