
For the sake of simplicity: Applying
software design parsimony to the

content of information system
ontologies

Timothy Tambassi
Ca’ Foscari University of Venice

Abstract
Although many information system ontologies [ISOs] claim to be
parsimonious, the notion of parsimony seems to influence the debate
on ISOs only at the level of vague and uncritical assumption. To
challenge this trend, the paper aims to clarify what it means for ISOs
to be parsimonious. Specifically, section 2 shows that parsimony in
computer science generally concerns software design and, together
with elegance, is one of the two aspects of the broader notion of
simplicity. Section 3 transforms the main claims of parsimony in
software design into claims about the content of ISOs, the combination
of which is hereafter called “parsimony of content”—where “content”
refers only to the content of ISOs. Sects. 4-7 discuss the application of
this parsimony to the design of ISOs, and outline different kinds (and
combinations) of parsimony of content. Finally, section 8 considers
whether parsimony of content could provide some criteria both for
selecting and/or classifying the contents of ISOs and for choosing
between different and equally consistent ISOs.

Keywords
information system ontologies, ontological aims, parsimony, repre-
sentation primitives, simplicity.

Ph
ilo

so
ph

ic
al

Pr
ob

le
m

si
n

Sc
ie
nc
e

(Z
ag
ad
ni
en

ia
Fi
lo
zo
fic
zn
e
w
N
au
ce

)

N
o

75
(2
02

3)
,p

p.
13
5–

15
5

∙
CC

-B
Y-
N
C-
N
D
4.
0



136 Timothy Tambassi

There are two ways of constructing a software design: one way is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no obvious
deficiencies.
Tony Hoare (1980)

1. Introduction

According to Turner (2018), there are two methodological advantages
to adopting parsimony in software design:

• diminishing the amount of work,
• reducing the risk of error.

«This is in line with Quine, who, in the case of theories, ar-
gues that parsimony carries with it pragmatic advantages, and that
pragmatic considerations themselves provide rational grounds for
discriminating between competing theories» (Turner, 2018, p.139).

Acknowledging such advantages, however, does not imply that
the adoption of parsimony is mandatory. Indeed, in speaking of infor-
mation system ontologies [ISOs], Smith (2004) and Grenon (2008)
remark that nothing prevents ISOs from:

[1] endorsing/rejecting different assumptions,
[2] including parsimony among those assumptions,
[3] considering the possibility of multiple forms of parsimony, and

then repeating [1–2].

Despite [1–3], the adoption of parsimony is so common for ISOs
that many ISOs implicitly and uncritically assume this notion. To
prevent parsimony from influencing the debate on ISOs at the level of



For the sake of simplicity. . . 137

an implicit and uncritical assumption, this paper aims to clarify what
it means for ISOs to be parsimonious. Sect. 2 shows that parsimony
in computer science generally concerns software design and, together
with elegance, is one of the two aspects of the broader notion of sim-
plicity. Sect. 3 transforms the main claims of parsimony in software
design into two claims about the contents of ISOs, the combination of
which is hereafter called “parsimony of content”—where “contents”
refers only to the contents of ISOs. Sects. 4–7 discuss the application
of this parsimony to the design of ISOs, and outline different kinds
(and combinations) of parsimony of content. Finally, Sect. 8 considers
whether parsimony of content could provide some criteria both for
selecting and/or classifying the contents of ISOs and for choosing
between different and equally consistent ISOs.

2. Parsimony in software design

One of the main reasons why computer scientists place simplicity
at the core of good and/or successful software design1 is that sim-
plicity contributes to the transparency and reliability of the design.2

According to Turner (2018, pp.133–134), simplicity does not have
a single meaning in this context; rather, it refers to two distinct and
related notions: elegance (or syntactic simplicity) and parsimony (or
ontological simplicity).3

1 On software design, see Allen (1997); Baljon (2002); Parsons (2015).
2 On simplicity in software design, see also Wirth (1974); Dijkstra (1979).
3 See also Baker (2016), who analyzes the distinction between elegance and parsimony
within the philosophy of science debate.



138 Timothy Tambassi

Elegance generally concerns the graspability, clarity, transparency,
correctness, efficiency, consistency, generality, uniformity, and ex-
planatory power of software.4 Parsimony links software design with
its specification5, and insists that

[4] software solutions do not go beyond what is required.

While Turner further specifies the meaning of “what is required”
in [4] by claiming that

[5] software should solve the problem it aims to solve, but no more,

Pawson (1998) takes one step further. First, he considers

[6] parsimony to have been achieved when it is no longer possible
to improve software by subtraction.

Then, he adds that

[7] parsimony is the quality that software applications have when
their components, details, and junctions have been reduced to
the essential.

[7] in turn means that

[8] the link between the design and the aims of software (see
[4–5]) also concerns the components, details, and junctions of
the software.

4 On elegance in software design, see Bentley and McIroy (1993); Gelernter (1998);
Oram and Wilson (2007); Hill (2018); Turner (2018).
5 One referee rightly pointed out that there are other ways of relating simplicity
and parsimony. The example they give is simplicity in understanding the code (i.e.
“semantic simplicity”), including self-commenting code, which is simple in terms
of understanding the code. I fully agree with them. I can only note here that this
paper is not intended to exhaust the debate on the relationship between simplicity
and parsimony. For more details on semantic simplicity, see Gelernter (1998); Sober
(2002); Turner (2018).



For the sake of simplicity. . . 139

[4–8] (together) imply that

[9] parsimony concerns the [9.1] aims of software and [9.2] its
components, details, and junctions.

3. Parsimony in information system ontologies

Section 2 has shown that:

[10] simplicity is at the core of good and/or successful software
design;

[11] simplicity can be divided into elegance and parsimony.

Turner (2018, p.128) adds that

[12] design is everywhere in computer science.

This means that, if [10–12] hold, parsimony also applies to the
design of ISOs.

Gruber (2009) defines ISOs as follows:

[13] ISOs are sets of representational primitives (henceforth, primi-
tives) with which to model a domain (of knowledge).6 Primi-
tives are primarily instances, classes, properties, and relations.7

6 For further (and competing) definitions of ISO, see Neches et al. (1991); Gruber
(1993); Guarino and Giaretta (1995); Bernaras et al. (1996); Borst (1997); Swartout
et al. (1997); Studer et al. (1998); Guarino (1998); Uschold and Jasper (1999); Sowa
(2005); Noy and McGuinness (2003); Tambassi and Magro (2015). Gruber (2009,
p.1964) has also affirmed that ISOs, or “ontologies”, are artefacts specified by (on-
tological) languages. Before him, Guarino and Giaretta (1995) have pointed out that
“ontology” in computer science has (at least) two different meanings: the artefact and
the philosophical discipline—which finds direct application in computer science (see,
for example Turner, 2018; Krzanowski and Polak, 2022). This explains why “ontology”
can have the same meaning in both philosophy and computer science.



140 Timothy Tambassi

Therefore, based on [4–9], applying parsimony (of software de-
sign) to [13] means that:

[14] ISOs should not go beyond the problem(s) they aim to solve
(see [4–5] and [9.1])—that is, beyond the domain(s) (of knowl-
edge) ISOs aim to model;

[15] the components, details and junctions of ISOs, that is the primi-
tives of ISOs, should be reduced to the essential (see [6–7] and
[9.2]).

Henceforth, by “parsimony of content” (where “content” refers
only to the contents of ISOs) I will mean the application of [4–9] to
[13], namely [14–15]. There are two main reasons for this emphasis
on “content”—rather than on “parsimony of ISOs” in the broader
sense. The first reason is that, within the debate on ISOs, the notion of
parsimony is chiefly associated with the content of primitives.8 There-
fore, to speak of “content” in “parsimony of content” and “primitives”
in [13] (i.e. according to Gruber’s definition of ISO) means to account
for this relation. The second reason is that parsimony of content does
not (aspire to) exhaust the debate on the parsimony of ISOs. In other
words, there may in principle be other parsimonies involved in the
ISOs debate, as well as other ways of applying [4–9] to ISOs. And
this is also in line with [10–12], which do not rule out that parsimony

7 Instances are the lowest-level components, the basic units, of ISOs (Laurini, 2017).
Classes, which may contain sub-classes and/or be sub-classes of other classes, are
sets of instances that share common features (Jaziri and Gargouri, 2010). Properties
describe the various features of a class and of its instances (Noy and McGuinness,
2003; Jaziri and Gargouri, 2010). Relations represent the way in which both classes
and instances interact with each other (Laurini, 2017). On primitives, see also Tambassi
(Tambassi, 2021).
8 See Burgun et al. (1999); Yao et al. (2011); Motara and Van der Schiff (2019);
Partridge et al. (2020).



For the sake of simplicity. . . 141

could be “everywhere” in ISOs, and thus also apply to something
other than the content of ISOs (Turner, 2018, pp.161–167). Moreover,
although it would transitively follow from [8–9] that

[16] parsimony of content deals with both [14–15],

we should also consider the possibility of

[17] following [14–15] separately.

Indeed, if adopting parsimony of content means following both
[14–15] (see [16]), nothing prevents us from adopting parsimony of
content partially, that is, from adopting either [14] or [15] by itself.

4. On the rivers of the UK

To specify what it means to adopt parsimony of content in practice,
suppose we build an ISO, ISO1, aimed at [A1] listing and [A2] classi-
fying all the rivers of the UK. Unless A1 and A2 are further specified,
A1 is fulfilled if and only if

[18] no river in the UK is excluded from ISO1,

whereas achieving A2 means

[19] providing any classification of such rivers.

[18] generally refers to the notion of completeness (of ISOs),9

according to which

9 See Bittner and Smith (2008).



142 Timothy Tambassi

[20] the contents of an ISO should be exhaustive10 with respect to
the domain that the ISO aims to model.

For ISO1, [20] means that the nearly 1,500 rivers crossing the UK
should find their place among the contents of ISO1, which ultimately
fall within (one of) the primitives of ISO1 (see also [13]), no matter
which primitive.

As for [19], A2 can in principle be achieved in many ways. For
example, ISO1 could

[21] classify the rivers according to their biotic and/or topographic
features;

[22] systematize the rivers according to the geographical region(s)
they cross;

[23] catalogue the rivers according to some (arbitrary) length inter-
vals;

[24] consider [21–23] together;
[25] provide any arbitrary classification.

The reason why there can be many ways to achieve A2 is that A2

does not specify any criteria for classifying the UK’s rivers. There-
fore, to the extent that each of [21–25] classifies the UK’s rivers,
there is no way to prefer one among [21–25] over the others, at least
according to A2.

10 See Tambassi (2021b). “Exhaustive” in [20] also refers to the debate on categories in
philosophy, within which “exhaustive” represents one of the three criteria of adequacy
(see Cumpa 2019), indicating that whatever there is (or could be) should find its place
in one and only one category (see Thomasson 2019).



For the sake of simplicity. . . 143

5. On the aims of information system ontologies

According to [14–15], applying parsimony of content to ISO1 entails
that:

[26] ISO1 should not go beyond its aims;
[27] (and) the primitives of ISO1 should be reduced to the essential.

As for [26], ISO1 has two aims: A1 and A2. In accordance with
[26], ISO1 is thus expected to

[28] list all the UK’s rivers (see A1),
[29] classify those rivers (see A2),
[30] do nothing more than what [25–26] specify.

[28] implies [18], [29] leads to [21–25], and thus assumes that
there can be different ways of fulfilling [26], or that ISO1 could not
go beyond its aims in different ways. [30] limits ISO1’s tasks to [28]
(or A1) and to [29] (or A2). This means that, according to [30], ISO1

should not, for example,

[31] list the UK’s lakes,
[32] (or) classify Germany’s rivers,

because [31–32] would go beyond A1 and A2, and hence contradict
[26] and [28–29]. All this also implies that

[33] (all) ISO1’s contents should be consistent with and functional
to its aims,

but also that

[34] no content of ISO1 should go beyond the aims of ISO1.



144 Timothy Tambassi

However, things can get complicated in cases like the following.
Suppose we fulfill [29] by means of [23], that is, by classifying the
UK’s rivers according to some (arbitrary) length intervals, such as
0–40 miles, 40–80 miles, 80–120 miles, and so on. What about the
property “length of the river”? Does the inclusion of such a property
within ISO1’s contents follow from [33–34]? On the one hand, one
could answer “no”: A1 and A2 only require [28–29], which do not
explicitly refer to the specific length of the rivers. On the other hand,
one could also answer “yes”, insofar as the “length of the river” would
justify the assignment of each (UK) river to one of the length intervals
of [23].

6. Completeness and parsimony of content

The principle of completeness (of ISOs) states that the contents of an
ISO should be exhaustive for the domain that the ISO aims to model
(see [20]). Applying completeness to (ISO1’s) A1 implies [14], but
does not exclude that:

[35] the same river appears twice (or several times) in ISO1,
[36] ISO1 also includes the UK’s lakes and/or Germany’s rivers.

Conversely, applying parsimony of content to A1 implies [18],
but excludes [36] because of [33–34]—which are ultimately inferred
from [26]. From [36], however, it does not follow that completeness
and parsimony of content are mutually contradictory, since:

[37] ISOs may consistently follow both completeness and parsi-
mony of content (see [1]).



For the sake of simplicity. . . 145

To justify [37], we could consider the negation of [36] to be only
a possibility for completeness, as well as a necessity for parsimony of
content. The same, we may add, can be said for the negation of [35].
If so,

[38] how does the negation of [35] follow from parsimony of con-
tent?

To answer [38], let us return to [27], according to which ISO1’s
primitives should be reduced to the essential. If [27], an (easy) solution
might be to avoid repetitions, so that

[39] each content of an ISO should appear only once in the same
ISO.

Now, [39] is based on [27], which follows from [15], which in
turn is one of the two pillars of parsimony of content (see [14–15]).
Moreover, maintaining [39] means affirming the negation of [35],
which is a necessity for parsimony of content and a possibility for
completeness. But if so, [37] can also be justified by [35].

7. Parsimony of content and (representational)
primitives

While [39] follows from [27], this is not all. Indeed, “ISO1’s primitives
should be reduced to the essential” seems to be open to different
interpretations, such as:

[40] reducing the types of the primitives we use (to the essential);



146 Timothy Tambassi

[41] reducing the tokens of the primitives we use (to the essential);11

[42] combining [40] and [41].

To explain [40–42], let us imagine that ISO1 follows [23] and
thus classifies all the UK’s rivers according to some (arbitrary) length
intervals. ISO1∧ [23] therefore has two aims: (A3) to list all the UK’s
rivers and (A4) to classify them according to [23].

Now, [40] suggests reducing the types of primitives: using fewer
primitive types to model a domain (see [13] and [20]) is preferable to
modelling the same domain using more primitive types. This means
that placing [S1] the UK’s rivers among the instances of ISO1 ∧
[23] and the intervals of length among the classes of ISO1 ∧ [23]
(respectively) would be preferable to [S2] placing those rivers and
length intervals among the instances, classes, and properties of ISO1

∧ [23]. Indeed, S1 uses fewer primitive types than S2.
[41] is instead ambiguous. It may refer to

[41.1] an ISO’s overall amount of tokens,

meaning that the tokens of ISO1 ∧ [23] should be reduced to the
essential. Now, while A3 (simply) requires that all of the nearly 1,500
rivers crossing the UK find their place among the contents of ISO1 ∧
[23] (for example, among the instances of ISO1 ∧ [23]), A4 might be
fulfilled in different ways. Supposing, for example, that each length
interval corresponds to a class of ISO1 ∧ [23], [41.1] suggests that

11 The distinction between [40] and [41] is largely based on Fiddaman and Rodriguez-
Pereyra’s (2018) distinction between two different forms of ontological economy.
According to the authors, the principle of qualitative economy requires us to avoid
multiplying types of entities when not necessary, while that of quantitative economy
requires us to avoid multiplying token entities when not necessary. For further reading
on ontological economy, see Sober (1975), Lewis (1973), van Inwagen (2001), Lando
(2010), and Schaffer (2015).



For the sake of simplicity. . . 147

[S3] classifying the UK’s rivers by means of two length intervals (e.g.,
“longer than 100 miles” and “shorter than 100 miles”) is preferable
to [S4] classifying those rivers by means of five length intervals (e.g.,
“between 0–30 miles”, “between 40–80 miles”, “between 80–120
miles”, and so forth). Why so? Because S3 requires (almost) 1,500
instances and 2 classes, 1,502 tokens in total, whereas S4 requires
(almost) 1,500 instances and 5 classes, 1,505 tokens in total. (This
also means that, insofar as S3 and S4 are both consistent with the aims
of ISO1 ∧ [23], it is irrelevant to [41.1] whether S4 is more detailed
than S3). But [41.1] also represents a way of balancing the overall
tokens of ISO1 ∧ [23] within the various primitives. For example, if
achieving A3 and A4 required that S3 also include 10 properties and
S4 includes 2 properties, then S4 would be preferable to S3. In other
words, the reduction of tokens within one primitive should not be at
the expense of a proliferation of tokens within the whole ISO.

[41.1], however, is not the only way to interpret [41], which might
also refer to

[41.2] the tokens of each primitive.

In turn, [41.2] could have two interpretations: [41.2.1] and
[41.2.2]. [41.2.1] indicates that modelling ISO1 ∧ [23] by means
of, for example, [S5] 10 classes, 2 relations and 1,500 instances is
preferable to modelling ISO1 ∧ [23] by means of [S6] 2 classes, 3
relations, 2 properties and 1,500 instances. For although there is no
difference between S5 and S6 in terms of the tokens of instances, and
S6 is preferable to S5 in terms of the tokens of classes, S5 is preferable
to S6 in terms of the tokens of relations and properties. This means
that, according to [41.2.1], we should prefer S5 over S6, insofar as
S5 is preferable with regard to both relations and properties, and S6

is preferable only with regard to classes. [41.2.2] instead focuses on



148 Timothy Tambassi

the tokens of each primitive, the reduction of which is independent
from one primitive to another, and does not directly concern [41.1]
or [41.2.1]. In other words, [41.2.2] offers the chance to apply [41]
(and more generally [15] or [27]) to one and only one primitive. Con-
sequently, we could have a [41] based on tokens of classes when the
tokens of classes are reduced to the essential, a [41] based on the
tokens of relations when the tokens of relations are reduced to the
essential, and so on for each primitive. All this does not imply that
those applications of [41] to one and only one primitive cannot be
combined to improve [15], [27] and/or [40–41], nor that the list of
primitives will never change, and with it the varieties of applications
of [41] to which the primitives refer.

However, there are also ambiguities surrounding [42]. Firstly, it
is unclear whether

[43] the combination refers to [40] and [41.1], or [40] and [41.2.1],
or [40] and [41.2.2], or [40], [41.1], and [41.2.1], and so on.

Secondly,

[44] once [43] is clarified, we should also define the order of priority
of the combination.

To clarify [44], let us suppose that the combination refers to [40]
and [41.1]. Giving priority to [40] means that reducing the types
of primitives is more important than reducing the total number of
tokens: that is, both primitive types and tokens should be reduced to
the essential but the reduction of the tokens comes after that of the
types of primitives. Giving priority to [41.1] means the opposite.



For the sake of simplicity. . . 149

8. Parsimony (of content) as a set of criteria

According to [14], ISOs should not go beyond their aims, whatever
these may be. As regards the contents of an ISO, [14] means that they
should all be consistent with the ISO’s aims (see [33–34]). According
to [15], for any ISO, we should reduce the types of primitives (see
[40]), the total number of tokens (see [41.1]), or the tokens of each
primitive (see [41.2.1] and [41.2.2]) to the essential. Alternatively
(see [42]), we could adopt [40] and one or more of [41.1], [41.2.1],
and [41.2.2] by defining their priority. According to [16], we should
adopt both [14] and [15], or better [14] and at least one of [40], [41.1],
[41.2.1], [41.2.2], or [42].

On this basis, let us focus on ISO1’s A2, according to which ISO1

should provide a classification of the UK’s rivers. Now, insofar as A2

does not specify any criteria to classify the UK’s rivers and [21–25]
are (all) consistent with A2, there is no reason why we should not
regard

[45] [21–25] as equally consistent with A2.

But, if [45], how are we to choose among [21–25]? The fact
that the criteria, if any, are not deducible from A2 does not imply or
guarantee that [14–16] provide any criteria. In other words,

[46] choosing among [21–25] may both [46.1] (at least partially)
depend and [46.2] not depend on (some of) [14–16].

In turn, [46] does not imply or guarantee that

[47] once we choose among [21–25], [14–16] provide criteria for
selecting and/or classifying the contents of ISOs.



150 Timothy Tambassi

All this means that parsimony of content (in general) can provide:

[48] some criteria for choosing among different and equally consis-
tent classifications/ISOs;

[49] some criteria for selecting and/or classifying the content of
ISOs;

[50] both [48] and [49];
[51] neither [48] nor [49].

9. Concluding remarks

Since some ISOs adopt parsimony as an implicit and uncritical as-
sumption, and/or without explaining what parsimony specifically con-
sists of (or refers to), these pages sought to clarify the point. In this
regard, I introduced the notion of parsimony of content, showing that

[52] this parsimony concerns two main claims, [14–15], as well
as their connection, [16], from which [33–34], [37], [39–40],
[41.1], [41.2.1], [41.2.2], [43–44] and [48–51] follow.

[52] broadly suggests that the adoption of parsimony of content
has to do with

[53] the interpretation and combination of claims about parsimony
of content,

[54] specifying whether parsimony of content provides some criteria
for choosing among different classifications/ISOs and/or for
selecting and/or classifying the contents of ISOs.12

12 Unlike some computer scientists (Floyd, 1967), I have not considered the possibility
of combining parsimony of content with modularization: indeed, breaking down
complex ISOs into (in)dependent modules would simply defer the question of adopting
parsimony of content to both complex ISOs and their (in)dependent modules.



For the sake of simplicity. . . 151

All this means that

[55] the notion (and application) of parsimony of content is multi-
faceted;

[56] an informed adoption of parsimony of content requires [53–54].

It does not follow from [55–56] that parsimony of content ex-
hausts the debate on the parsimony of ISOs, nor that ISOs are bound
to adopt parsimony of content. In other words, [55–56] are consis-
tent with [1–3], thus ensuring the plurality of the methodological
approaches shaping the debate on ISOs.

Funding. This paper has received funding from the European
Research Council under the European Union Horizon Europe Re-
search and Innovation Programme (GA no. 101041596 ERC—
PolyphonicPhilosophy).

Disclamer. Funded by the European Union. Views and opinions ex-
pressed are however those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the European Union nor
the granting authority can be held responsible for them.

Bibliography

Allen, R.J., 1997. A Formal Approach to Software Architecture (CMU Tech-
nical Report CMU-CS-97-144). (technical report). Pittsburgh: Carnegie
Mellon, School of Computer Science.

Baker, A., 2016. Simplicity. In: E.N. Zalta, ed. The Stanford Encyclopedia of
Philosophy. Winter 2016. Metaphysics Research Lab, Stanford Univer-
sity. Available at: <https://plato.stanford.edu/archives/win2016/entries/
simplicity/> [visited on 29 January 2024].

https://plato.stanford.edu/archives/win2016/entries/simplicity/
https://plato.stanford.edu/archives/win2016/entries/simplicity/


152 Timothy Tambassi

Baljon, C.J., 2002. History of history and canons of design. Design Studies.
Philosophy of design, 23(3), pp.333–343. https://doi.org/10.1016/S0142-
694X(01)00042-4.

Bentley, J.L. and McIlroy, M.D., 1993. Engineering a sort function. Software:
Practice and Experience, 23(11), pp.1249–1265. https://doi.org/10.1002/
spe.4380231105.

Bernaras, A., Laresgoiti, I. and Corera, J., 1996. Building and Reusing Ontolo-
gies for Electrical Network Applications. In: W. Wahlster, ed. Proceed-
ings of the 12th European Conference on Artificial Intelligence (ECAI’96).
Chichester, UK: John Wiley and Sons, pp.298–302.

Borst, W.N., 1997. Construction of Engineering Ontologies for Knowledge
Sharing and Reuse. PhD thesis. University of Twente, Centre for Telem-
atics and Information Technology (CTIT). Available at: <https://research.
utwente.nl/en/publications/construction-of -engineering-ontologies-
for-knowledge-sharing-and-> [visited on 31 January 2024].

Burgun, A., Botti, G., Fieschi, M. and Le Beux, P., 1999. Sharing knowledge
in medicine: semantic and ontologic facets of medical concepts. IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No.99CH37028). Vol. 6. Tokyo,
Japan: IEEE, pp.300–305. https://doi.org/10.1109/ICSMC.1999.816568.

Dijkstra, E.W., 1979. The Humble Programmer. Turing Award Lecture. In:
E. Yourdon, ed. Classics in Software Engineering. New York, N.Y:
Yourdon Press, pp.113–128. Available at: <http://archive.org/details/
classicsinsoftwa00your> [visited on 31 January 2024].

Fiddaman, M. and Rodriguez-Pereyra, G., 2018. The razor and the laser.
Analytic Philosophy, 59(3), pp.341–358. https://doi.org/10.1111/phib.
12128.

Floyd, R.W., 1967. Assigning meanings to programs. Proceedings of Sym-
posium on Applied Mathematics, 19, pp.19–32. Available at: <http :
//laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf>.

Gelernter, D.H., 1998. Machine Beauty: Elegance and the Heart of Technol-
ogy. New York: Basic Books. Available at: <http://archive.org/details/
machinebeautyele00gele> [visited on 31 January 2024].

https://doi.org/10.1016/S0142-694X(01)00042-4
https://doi.org/10.1016/S0142-694X(01)00042-4
https://doi.org/10.1002/spe.4380231105
https://doi.org/10.1002/spe.4380231105
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://doi.org/10.1109/ICSMC.1999.816568
http://archive.org/details/classicsinsoftwa00your
http://archive.org/details/classicsinsoftwa00your
https://doi.org/10.1111/phib.12128
https://doi.org/10.1111/phib.12128
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://archive.org/details/machinebeautyele00gele
http://archive.org/details/machinebeautyele00gele


For the sake of simplicity. . . 153

Grenon, P., 2008. A Primer on Knowledge Representation and Ontolog-
ical Engineering. In: K. Munn and B. Smith, eds. Applied Ontology.
Frankfurt am Main: Ontos Verlag, pp.57–82. https://doi.org/10.1515/
9783110324860.57.

Gruber, T.R., 1993. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), pp.199–220. https://doi.org/10.1006/knac.
1993.1008.

Gruber, T., 2009. Ontology. In: L. Liu and M.T. Özsu, eds. Encyclopedia
of Database Systems. Boston, MA: Springer US, pp.1963–1965. https:
//doi.org/10.1007/978-0-387-39940-9_1318.

Guarino, N., 1998. Formal Ontologies and Information Systems. In: N. Guar-
ino, ed. Formal Ontology in Information Systems. Proceedings of
FOIS’98, Trento, Italy, 6-8 June 1998. Amsterdam: IOS Press, 3–15.

Guarino, N. and Giaretta, P., 1995. Ontologies and Knowledge Bases: To-
wards a Terminological Clarification. In: N.J.I. Mars, ed. Towards Very
Large Knowledge Bases: Knowledge Building and Knowledge Sharing.
Amsterdam: IOS Press, pp.25–32.

Hill, R.K., 2018. Elegance in Software. In: L. De Mol and G. Primiero, eds.
Reflections on Programming Systems. Vol. 133, Philosophical Studies
Series. Cham: Springer International Publishing, pp.273–286. https :
//doi.org/10.1007/978-3-319-97226-8_10.

Jaziri, W. and Gargouri, F., 2010. Ontology Theory, Management and Design:
An Overview and Future Directions. In: W. Jaziri and F. Gargouri, eds.
Ontology Theory, Management and Design: Advanced Tools and Models.
IGI Global, pp.27–77. https: / /doi.org /10.4018 /978- 1- 61520- 859-
3.ch002.

Krzanowski, R. and Polak, P., 2022. The meta-ontology of AI systems with
human-level intelligence. Philosophical Problems in Science (Zagad-
nienia Filozoficzne w Nauce), (73), pp.199–232.

Lando, G., 2010. Ontologia. Un’introduzione. Rome: Carocci.
Laurini, R., 2017. Geographic Knowledge Infrastructure: Applications to

Territorial Intelligence and Smart Cities. London: ISTE Press - Elsevier.
Lewis, D., 1973. Counterfactuals. 1st ed. Oxford: Blakwell.

https://doi.org/10.1515/9783110324860.57
https://doi.org/10.1515/9783110324860.57
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1007/978-3-319-97226-8_10
https://doi.org/10.1007/978-3-319-97226-8_10
https://doi.org/10.4018/978-1-61520-859-3.ch002
https://doi.org/10.4018/978-1-61520-859-3.ch002


154 Timothy Tambassi

Motara, Y.M. and Van Der Schyff, K., 2019. A functional ontology for
information systems. South African Computer Journal, 31(2). https :
//doi.org/10.18489/sacj.v31i2.691.

Neches, R. et al., 1991. Enabling technology for knowledge sharing. AI
Magazine, 12(3), pp.36–36. https://doi.org/10.1609/aimag.v12i3.902.

Noy, N.F. and McGuinness, D.L., 2003. Ontology Development 101: A Guide
to Creating Your First Ontology. (technical report). Stanford, CA: Stan-
ford University. Available at: <http: / /www.ksl .stanford.edu /KSL_
Abstracts/KSL-01-05.html> [visited on 1 February 2024].

Oram, A. and Wilson, G., eds., 2007. Beautiful code. 1st ed, Theory in practice
series. Beijing; Sebastapol, Calif: O’Reilly.

Parsons, G., 2015. The Philosophy of Design. Cambridge: Polity press.
Partridge, C. et al., 2020. A Survey of Top-Level Ontologies - to inform the

ontological choices for a Foundation Data Model. (technical report).
CDBB. https://doi.org/10.17863/CAM.58311.

Pawson, J., 1998. Minimum. London: Phaidon Press.
Schaffer, J., 2015. What not to multiply without necessity. Australasian

Journal of Philosophy, 93(4), pp.644–664. https: / /doi.org /10.1080 /
00048402.2014.992447.

Smith, B., 2004. Ontology. In: L. Floridi, ed. The Blackwell Guide to the
Philosophy of Computing and Information. 1st ed, Blackwell philosophy
guides, 14. Malden, Mass.: Blackwell, pp.155–166.

Sober, E., 1975. Simplicity. Oxford: Oxford University Press. https://doi.org/
10.1093/acprof:oso/9780198244073.001.0001.

Sober, E., 2002. What is the Problem of Simplicity? In: A. Zellner,
H.A. Keuzenkamp and M. McAleer, eds. Simplicity, Inference, and
Modelling. Cambridge: Cambridge University Press, pp.13–32.

Sowa, J.F., 2005. Guided Tour of Ontology. Available at: <http://www.jfsowa.
com/ontology/guided.htm> [visited on 29 January 2024].

Studer, R., Benjamins, V.R. and Fensel, D., 1998. Knowledge engineering:
Principles and methods. Data & Knowledge Engineering, 25(1), pp.161–
197. https://doi.org/10.1016/S0169-023X(97)00056-6.

https://doi.org/10.18489/sacj.v31i2.691
https://doi.org/10.18489/sacj.v31i2.691
https://doi.org/10.1609/aimag.v12i3.902
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html
https://doi.org/10.17863/CAM.58311
https://doi.org/10.1080/00048402.2014.992447
https://doi.org/10.1080/00048402.2014.992447
https://doi.org/10.1093/acprof:oso/9780198244073.001.0001
https://doi.org/10.1093/acprof:oso/9780198244073.001.0001
http://www.jfsowa.com/ontology/guided.htm
http://www.jfsowa.com/ontology/guided.htm
https://doi.org/10.1016/S0169-023X(97)00056-6


For the sake of simplicity. . . 155

Swartout, B., Patil, R., Knight, K. and Russ, T., 1997. Toward Distributed
Use of Large-Scale Ontologies. AAAI Symposium on Ontological Engi-
neering. Stanford, CA, pp.138–148.

Tambassi, T., 2021. The Philosophy of Geo-Ontologies: Applied Ontology of
Geography, SpringerBriefs in Geography. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-78145-3.

Tambassi, T. and Magro, D., 2015. Ontologie informatiche della geografia.
Una sistematizzazione del dibattito contemporaneo. Rivista di Estetica,
(58), pp.191–205. https://doi.org/10.4000/estetica.447.

Turner, R., 2018. Computational Artifacts: Towards a Philosophy of Com-
puter Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-
3-662-55565-1.

Uschold, M., Box, P.O. and Usa, W., 1999. A Framework for Understanding
and Classifying Ontology Applications. Proceedings of the IJCAI99
Workshop on Ontologies and Problem-Solving Method. Stockholm.

Van Inwagen, P., 2001. Ontology, identity, and modality: essays in meta-
physics, Cambridge studies in Philosophy. Cambridge, U.K.; New York:
Cambridge University Press.

Wirth, N., 1974. On the Design of Programming Languages. Proc. IFICP
Congress 74, pp.386–393. Available at: <https://web.eecs.umich.edu/
~bchandra/courses/papers/Wirth_Design.pdf> [visited on 1 February
2024].

Yao, L. et al., 2011. Benchmarking ontologies: Bigger or better? PLoS Com-
putational Biology, 7(1), e1001055. https://doi.org/10.1371/journal.pcbi.
1001055.

https://doi.org/10.1007/978-3-030-78145-3
https://doi.org/10.4000/estetica.447
https://doi.org/10.1007/978-3-662-55565-1
https://doi.org/10.1007/978-3-662-55565-1
https://web.eecs.umich.edu/~bchandra/courses/papers/Wirth_Design.pdf
https://web.eecs.umich.edu/~bchandra/courses/papers/Wirth_Design.pdf
https://doi.org/10.1371/journal.pcbi.1001055
https://doi.org/10.1371/journal.pcbi.1001055



