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Abstract
Computers are increasingly interactive. They are no more transfor-
mational systems producing a final output after a finite execution.
Instead, they continuously react in time to external events that modify
the course of computing execution. While philosophers have been
interested in conceptualizing computers for a long time, they seem to
have paid little attention to the specificities of interactive computing.
We propose to tackle this issue by surveying the literature in theo-
retical computer science, where one can find explicit proposals for
a model of interactive computing. In that field, the formal modelling
of interactive computing systems has been brought down to whether
the new interaction models are reducible to Turing Machines. There
are three areas where interaction models are framed. The comparison
between TMs and interactive system models is at stake in all of them.
These areas are namely some works on concurrency by Milner, on
Reactive Turing Machines, and on interaction as a new computing
paradigm. For each of the three identified models, we present its moti-
vation, sum up its account for interaction and its legacy, and point out
issues regarding the understanding of computers. The survey shows
difficulties for epistemologists. The reason is that these analyses focus
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on the formal equivalence between interactive models of computa-
tion and classic ones. Such a project is different from addressing
how a computing machine can be interactive: in other words, which
mechanisms allow it.

Keywords
philosophy of computing, models of computation, interactive comput-
ing, computing mechanism, computational mechanistic explanation.

Introduction

In the philosophy of computing, we are paying increased atten-
tion to a set of new features of computers. This set has led to

the introduction of a new label for these computing machines: they
are referred to as interactive computing machines (Dodig-Crnkovic,
2011; Goldin, Wegner and Smolka, 2006; Soare, 2013; Van Leeuwen
and Wiedermann, 2001; Wegner, 1997). The set of new features can be
captured in the following statement made in a 2011 paper by Gordana
Dodig-Crnkovic (our highlights):

Present day computers are very different from the early stand-
alone calculators designed for mechanizing mathematical oper-
ations. They are largely used for communication in world-wide
networks and variety of information processing and knowl-
edge management. Moreover, they play an important role
in the control of physical processes and thus connect to the
physical world, especially in automation and robotics. [. . . ]
Computational processes are nowadays distributed, reactive,
agent-based, and concurrent. The main criterion of success of
the computation is not its termination, but its response to the
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outside world, its speed, generality and flexibility; adaptabil-
ity, and tolerance to noise, error, faults, and damage (Dodig-
Crnkovic, 2011).

Historically, the concept of interaction was introduced by a com-
puter scientist, Milner, in the 1970s-1980s (Milner, 1975; 1982; 1993;
1999). At first, an interactive computing system was defined as a sys-
tem where several threads execute instructions in parallel while being
able to synchronize and communicate at certain moments of the ex-
ecution. Since then, the characteristics of computer systems have
continued to evolve, and by “interactive” we refer today to a broader
set of properties that can be grouped as follows: the ability to continu-
ously react in time to external events that modify computing execution.
This class of computers deserves all our attention since they are ubiqui-
tous. Every computer system today is designed to respond to external
events in a predictable way and according to temporal constraints. In
any case, what distinguishes this class of so-called interactive comput-
ing machines from the classical computer systems that preceded them
is that they are no longer purely transformational systems. A transfor-
mational system is a classical computing device that, given a set of
inputs, produces a final output after a finite execution. This evolution
of computing complicates the answer to what a computer is. The ques-
tion is well-known in the philosophy of computing (Piccinini, 2008;
Rapaport, 2018; Smith, 2002). As already noted, many answers to the
question distort it and answer the question of what a computation is,
immediately projecting the field of investigation into the theory of
computability:

A fairly obvious, trivial, and almost-circular definition of ‘com-
puter’ says that a computer is a machine that computes. The
natural next question is: What does it mean to compute? But
this shifts the burden of answering our question away from
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what computers are to the topic of what computation is. Many
of the objections to various theories about computers are really
objections to what counts as a computation (Rapaport, 2018).

This leaves us with the specific issue we want to address. We ask
whether models of computation for interaction allow us to answer
the question of what an actual (necessarily interactive) computer is.
Current computers come in various forms and we chose in this paper
to restrict our concerns to a delimited notion of interaction, as defined
in Human-Computer Interaction (Basman et al., 2018; Beaudouin-
Lafon, 2006; Dearden and Harrison, 1997; Hornbaek and Oulasvirta,
2017; Myers, 1994), and target a specific set of ubiquitous computing
devices—those interacting with humans, e.g., through digital inter-
faces. We will not elaborate on analog computing (Bielecki, 2019)
and natural computation (Dodig-Crnkovic, 2011; MacLennan, 2003).

To tackle the issue of interactive computing devices, we propose
here an approach that, to the best of our knowledge, has not been
proposed so far: we want to examine the models of computation
proposed in theoretical computer science to think about interactive
computing systems. We offer a literature survey where one can find
explicit theories of interaction.1 We show that the formal modelling of
interactive computing systems has been brought down to whether the
new interaction models are reducible to Turing’s a-machines (Turing,
1937)—we will refer to them as Turing Machines (TMs). Questioning
the theoretical bounds of the Turing Machine in computer science
when faced with the existence of interactive computing devices has
been explored at least since Milner’s work on communicating and

1 We insist on our two criteria: explicit theories of interaction in theoretical computer
science. We have in mind the fact that other communities e.g., the engineering com-
munity on reactive systems, are related to our topic but they have not conceptualized
interaction as such.
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mobile systems (Milner, 1993; 1999). To the best of our knowledge,
there are three areas where interaction models are framed as such.
These areas are some works (i) on concurrency by Milner and his
followers (Milner, 1999; 2006), (ii) on Reactive Turing Machines (An-
dersen, Mørk and Sørensen, 1997; Baeten, Luttik and Tilburg, 2013;
Van Leeuwen and Wiedermann, 2001; 2006), and (iii) on interac-
tion as a new non-algorithmic computing paradigm (Goldin, Wegner
and Smolka, 2006; Wegner, 1997; Wegner and Goldin, 2003). For
each of the three identified models, we:

• present the motivation behind it,
• sum up its account for interaction,
• identify its legacy,
• point out issues regarding the understanding of computers qua

that model.

We then want to show how these approaches, which belong to
a formal approach, cannot provide an answer to the question of what
computers are, and for two reasons. On the one hand, these models
of computation have focused their attention on whether interactive
models are reducible to models of classical computation—par excel-
lence, the Turing machine. Proving (or not) that an interactive property
can be formalized as a computable property in the classical Turing’s
sense does not answer the question of how an interactive property
comes into existence and can be the object of execution. On the other
hand, and this is a correlate, these models do not propose a basis for
a mechanistic explanation of the very possibility of an interactive com-
puting system. With only formal models of interactive computation,
we might run the risk of not offering an adequate conceptualization
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of current computers. Therefore, we end up proposing to take the
distinction seriously between models of computation and mechanistic
computational explanations, as presented by Miłkowski (2011; 2014).

1. Milner introduces a distinction between
interactional and computational behavior

1.1 Motivation

Milner was the one who introduced the concept of interaction in
computer science. He summarized his motivations in a famous Turing
Award speech (Milner, 1993). Milner was concerned with the logical
foundations of computing inherited from Turing. He was preoccupied
with the idea that computing practices had evolved since the birth
of computing, notably in terms of architecture. He took seriously
the possibility that the logical foundations dating back to the thirties
may not match the growing challenges of his time and may require
additional concepts.

Milner (2006) pointed out that the logical foundations of com-
puting offered by Turing (1937) were previous to the first physical
computers and that computer science is grounded in logic and engi-
neering. On the engineering side, computer science was inherited from
von Neumann’s pioneering work (Aspray, 1990; Godfrey and Hendry,
1993). Only one thing could happen at once in an early von Neu-
mann’s computer. Nevertheless, there was more to computing than
von Neumann’s architecture (Backus, 1978; Milner, 2006). A growing
interest in dealing with concurrency in the sixties and seventies made
sequential programming less warranted. Therefore, to Milner, the log-
ical foundations of computing were to evolve. The main flaw of the
early logical foundations was the reduction of computing processes



Modelling interactive computing systems. . . 83

to the concept of an algorithm, which tends to associate computing
with mere calculation without taking concurrent activity into account.
Because of the evolution of computing engineering practice, Milner
questioned whether the logical grounds of computing should evolve as
well. Milner’s thesis can be put in a nutshell: “this logical foundation
has changed a lot since Turing but harks back to him. To be more
precise: (i) Computing has grown into informatics—the science of
interactive systems; (ii) Thesis: Turing’s logical computing machines
are matched by a logic of interaction” (Milner, 2006). Consequently,
a theory and new language to express concurrent activity were re-
quired: “we must find an elementary model which does for interaction
what Turing’s logical machines do for computation” (Milner, 2006).

The need to define a new computing theory is first displayed
through the evolution of computing practice. To sum up, Milner’s mo-
tivation and focus were the solving of concurrency issues in distributed
systems, with the idea that the evolution of computing practices re-
quired new formal tools: “Through the 1970s, I became convinced
that a theory of concurrency and interaction requires a new conceptual
framework, not just a refinement of what we find natural for sequential
[algorithmic] computing” (Milner, 1993).

1.2 Account for interaction

Milner introduced the opposition between interactional and computa-
tional behaviour. Introducing the concept of interaction, Milner (1975;
1982; 1983) referred to concurrent message passing between agents.
Milner’s work coincided with Petri’s (1980) new model of concurrent
processes, which generally intended to describe concurrency in infor-
mation systems.2 To Milner, interaction is more expressive than a TM,

2 Concurrency theory emerged from Dick Karp’s early work in the 1960s, grew with
(Petri, 1980) and later work on transition systems (Glabbeek and Plotkin, 2004; Nielsen,
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but it still describes an effective procedure. Milner did not assert equiv-
alence between an interactive model and a TM, but he introduced the
topic (Milner, 1999) and left it unanswered. Four main differences
between old (computational) and new (interactional) computing are
made striking by Milner. First, in Milner’s words, a Turing Machine
prescribes a behaviour to be executed. In contrast, new computing re-
quires the description of an information flow between several system
components. Second, old computing is characterized by a hierarchical
design when current practice involves heterarchical phenomena in
the computing system. Third, in new computing, the designer cannot
predict when agents will be triggered or the overall behaviour of the
computing system. Fourth, the user is not merely looking for an end
result in new computing practice. There is more than a mathemati-
cal function to evaluate, as it used to be in old computing. The user
instead interacts with the system, and the look for an end result is re-
placed by continuing interaction. Having taken stock of the evolution
of computing practice on the engineering side, Milner examines its
consequences on the logic foundations of computing. The pi-calculus
and his work on the equivalence with automata, known as bisimula-
tion, achieved this reflection on interactive processes (Milner, 1993;
1999) with a formalism.

1.3 Legacy

Milner’s work on interaction has become a founding block in automata
theory and concurrency theory. It installed the notion of a transition
system as the prime mathematical model to represent discrete be-
havior (Arbach et al., 2015; Baldan, Corradini and Montanari, 2001;

Plotkin and Winskel, 1981), and has now developed into a mature theory of reactive
systems (Harel and Pnueli, 1985) with diverse network models (for an overview, see
Lee and Sangiovanni-Vincentelli, 1998; Lee and Neuendorffer, 2006).
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Glabbeek and Plotkin, 2004; Nielsen, Plotkin and Winskel, 1981).
It also showed that language equivalence was not the correct notion
when comparing automata for interactive systems. Instead, it should
be replaced by a notion of behavioral equivalence or bisimilarity (Mil-
ner, 1999). The pi-calculus has inspired research to derive a language
from it. The Pict (Pierce and Turner, 2000) programming language is
an example.

Milner’s work is foundational and served as a reference for any-
one after him, reflecting on the need for a new framework dedicated
to new emerging computing practices. Milner insists on an essen-
tial reminder that we would like to consider. When modelling, the
engineering practice matters and is to be articulated with the logi-
cal foundations of the model, should it involve elaborating a new
framework. Famously, Wegner and Goldin acknowledge that Milner
was the first to introduce the idea that classic models of computation
were insufficient. They argue that Milner did not state clearly whether
computation in concurrent communicating systems (CCS) and the pi-
calculus were reducible to Turing machines and algorithms (Wegner
and Goldin, 2003). If one goes and looks at Milner’s Turing Award
Speech, it seems true that classical computation translates into an
interactive calculus. However, it is not stated whether any formula
in the pi-calculus can be expressed in a classical calculus like the
lambda-calculus.

1.4 Issues for an account of current computers

Given the account of current computers that we are looking for, we
see two limits in the lessons drawn from Milner. First, we are looking
for an explanation of the interactive computing phenomena at stake in
a computer. Therefore, the relation between layers of abstraction, from
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the computational to the physical, is crucial. However, to Milner, the
physical layer of the machine is not of much interest, and the calculus
of CCS needs to abstract away from the physical. As Milner puts it,
informatics is about virtual symbols: “physical systems tend to have
permanent physical links; they have fixed structure. But most systems
in the informatic world are not physical; their links may be virtual
or symbolic” (Milner, 1999). From our perspective, abstracting away
from the physical world comes at some cost for an explanation. A com-
plete explanation of a computing system can hardly be provided in
details within a single understandable abstraction, since a computing
sytems is extremely multi-layered (Lee, 2020; Nisan and Schocken,
2005). Therefore, an explanation of a computing system is necessarily
a trade-off between understandability and overwhelming details. As
we will flesh out in the last section 4 by referring to Miłkowski’s work
(Miłkowski, 2011; 2016), a good computational explanation must link
the formal story and the blueprint of the computing mechanism. Such
articulation is not told in a formal theory of concurrent processes. Sec-
ond, this first story of interactive systems restricts them to concurrent
systems, which is only one dimension of interest when describing
what current computers do. There are at least two core dimensions
left aside: what makes possible timing instructions and the connection
between physical processes inside and outside the computing system.

2. Reactive TMs: extending the original model

2.1 Motivation

More recently, a literature domain focused on a “Reactive Turing
machine” has emerged (Andersen, Mørk and Sørensen, 1997; Baeten,
Luttik and Tilburg, 2012; 2013; Luttik and Yang, 2016; Van Leeuwen
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and Wiedermann, 2006). It reminds us that the purpose of Turing’s a-
machine model was to propose a formal account of what is computable
by effective means (algorithmically computable). This formalization
was achieved before the realization of the first digital computers. In
a way reminiscent of Milner, the question is whether the TM model
still fits computing practices decades later. The strategy chosen is to
see whether extensions of the original TM are sufficient to describe
new computing practices and whether the obtained model is still equiv-
alent to a TM. The strategy founds its frame within computability
theory and reflects on its scope. This literature domain that proposes
extensions of the Turing machine to account for interactive comput-
ing systems may be traced back to seminal works on a “Universal
reactive machine” (Andersen, Mørk and Sørensen, 1997). In that re-
spect, although pointing at the specificity of interactional behaviour,
the main framework still relates to Turing’s. Baeten, Luttik, and van
Tilburg (Baeten, Luttik and Tilburg, 2013) are looking for a model of
interactive computation, extending the classical TM with a process-
theoretical notion of interaction related to Milner’s previous work. The
strategy involves questioning the relationship between such extensions
and the Church-Turing thesis. As a reminder, the Church-Turing thesis
states that a computable function by effective means is computable
by a Turing machine. The community interested in Reactive Turing
machines asks the following question: can the Church-Turing thesis
also be extended? Van Leeuwen and Wiedermann (2001) focus on the
possible extension of the Church-Turing thesis to account for interac-
tive computing: “We will motivate the need for a reconsideration of
the classical Turing machine paradigm and formulate an extension of
the Church-Turing thesis” (Van Leeuwen and Wiedermann, 2001).

What is at stake is whether the Church-Turing thesis holds given
warranted new models of computation: “Is the Church-Turing thesis
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as we know it still applicable to the novel ways in which computers
are now used in modern information technology? Will it hold for the
emerging computing systems of the future?” (Van Leeuwen and Wie-
dermann, 2001). The Church-Turing thesis originally did not entail
a claim about computing in general (what computers do and will do)
but only about effective computation. Therefore, it does not follow
that we should ask the Church-Turing thesis for answers on what
computing is. Replacing a question about computing with a question
about computation is the mark of a specific formal perspective within
the frame of computability theory. Understanding computing and its
evolution from a formal perspective consist of questioning what can
be computed and seeing if there is another notion of computation than
effective computation in the sense of Church-Turing.

2.2 Account for interaction

The starting point in the Reactive TM community is a standard cur-
rent computer designed as a distributed system interacting with an
environmental agent: a site machine. Starting from this model, the
reflection on interaction aims at showing the equivalence between this
site machine and a Turing machine augmented by some functions.
The conclusion is that a site machine computer computes effectively
and yet requires a TM with new functions, thus requiring an extension
of Church-Turing’s thesis. There are effectively computable functions
that TMs, in a strict sense, cannot compute. One crucial dimension
that the community wants to account for is particularly relevant to
us: “In order to mimic site machines, a Turing machine must have
a mechanism that will enable it to model the change of hardware
or software by an operating agent” (Van Leeuwen and Wiedermann,
2001). To make interaction with an external agent possible, the model
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needs to integrate a way of entering new, external, and possibly non-
computable information into the machine. This is precisely what
oracles do. The authors prefer a more general notion: an advice func-
tion. The model of a Reactive TM (also called a TM with advice)
is considered expressive and definitionally equivalent to an Oracle
Turing Machine.

Van Leeuwen and Wiedermann identify three key elements that
should be integrated all together within the frame of algorithmic com-
putability: “non-uniformity of programs”, “interaction of machines”,
and “infinity of operation”. By the non-uniformity of programs, the
authors refer to the fact that current programs on a personal computer
are no longer fixed but evolve, are upgraded, and their data remain in
memory even when the machine is not running. By interaction, they
intend to contrast a TM, where all input data are present before the
start of the computing procedure, with a modern computer, where
continuous streaming of data via input ports is going on. The third
mentioned characteristic, the infinity of operation, refers to distributed
and mobile communication systems. These systems are to be seen
as dynamic networks of many entities sending and receiving signals
in unpredictable ways that are to be synchronized. To accommodate
the original TM model, Leeuwen and Wiedermann propose to define
“Interactive Turing machines with advice.” Integrating an “advice”
function amounts to entering new, external, and non-computable in-
formation into the machine, which requires using oracles (Balcázar,
Díaz and Gabarró, 1995; Rogers, 1987). This way, a TM with advice
resembles site machines and I/O automata in being equipped with
input and output ports. To the authors, formal tools to support interac-
tion and infinite computations are already available. As for interaction,
they refer to already well-known and developed literature on the the-
ory of concurrent processes, the programming of parallel processes,
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communication protocols, and distributed algorithms. As for infi-
nite computations, Leeuwen and Wiedermann understand them from
the language-theoretic viewpoint in the theory of omega-automata
(Staiger, 1997; Thomas, 1990).

2.3 Legacy

This approach to extending the Turing machine and the Church-Turing
thesis is at the junction between Milner’s work and Wegner’s (pre-
sented in the coming section 3). It makes the junction in that it begs
the question of a new paradigm. Milner had not formulated his theory
of interaction in such radical terms, but Wegner goes further. The
Reactive Turing Machine community asks whether the mentioned
required extensions lead to a new computing paradigm: “The ex-
perience with present-day computing confronts us with phenomena
that are not captured in the scenario of classical Turing machines”
(Van Leeuwen and Wiedermann, 2001). The computations carried
out on Turing machines with advice are said to be “more powerful”
than classic computations on a-machines. The authors insist that this
claim does not go against the Church-Turing thesis. To Leeuwen and
Wiedermann, like other physical systems (Pour-El, 1999), TMs with
advice or oracle Turing machines do not fit the concept of a finite
algorithm that can be computed by means of a TM. The conclusion
pushes towards a paradigm shift:

What makes them non-fitting under the traditional notion of
algorithms is their potentially endless evolution in time. This
includes both interaction and non-uniformity aspects. This
gives them the necessary infinite non-uniform dimension that
boosts their computational power beyond that of standard
Turing machines (Van Leeuwen and Wiedermann, 2001).
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The authors ensure that such a paradigm shift does not put into
question the original Church-Turing thesis because their proposal for
interactive computation does not involve solving undecidable prob-
lems (Van Leeuwen and Wiedermann, 2001) using effective computa-
tion. The work seems to have served as a pivotal point in structuring
the debate on a model of interactive computation around its implica-
tions for the Church-Turing thesis. This is evidenced by the objections
formulated against Wegner’s work which pushes further the concept
of interaction and the need for a new paradigm: a proposal of this kind
had fallen under objections framed within the theory of computability.

2.4 Issues for an account of current computers

The project is focused on extending the original TM to make it “re-
active”. The proposed level of abstraction cannot account for the
mechanisms that make the proposed extensions possible. We can
take a closer look at the type of description presented in this formal
framework to account for an interactive scenario:

The computational scenario of an interactive Turing machine
is as follows. The machine starts its computation with empty
tapes. It is driven by a standard Turing machine program. At
each step, the machine reads the symbols appearing at its input
ports. At the same time, it writes some symbols to its output
ports. Based on the current context, i.e., on the symbols read
on the input ports and in the ‘window’ on its tapes, and on
the current state, the machine prints new symbols under its
heads, moves its windows by one cell to the left or to the right
or leaves them as they are, and enters a new state. Assuming
there is a move for every situation (context) encountered by
the machine, the machine will operate in this manner forever.
Doing so, its memory (i.e., the amount of rewritten tape) can



92 Alice Martin, Mathieu Magnaudet, Stéphane Conversy

grow beyond any limit. At any time t > 0, we will also allow
the machine to consult its advice, but only for values of at
most t (Van Leeuwen and Wiedermann, 2001).

If we look for a mechanistic explanation of computing, we need
some elements to be unpacked beyond a formal account to make sense
of the quoted scenario above. For example, we need to account for
how reading and writing on the ports are possible. It presupposes that
the interactive computing system can wait, pause, and react depending
on the arrival or absence of new data. What allows such behavior?
It presupposes some mechanisms allowing the system either to be
interrupted by environmental processes or to check the new incoming
values steadily.3 In other words, given the initial question (“what is
an interactive computer?”), some phenomena cannot be accounted
for within the frame of an extended Turing machine. The way oracles
work remains at a level of abstraction too remote from the minimal
causal blueprint we need for our purpose.

3. Going beyond TMs? Wegner’s new paradigm

3.1 Motivation

A strong motivation for Wegner’s view on interaction is to overcome
the Strong Church-Turing thesis (CTT) that he takes to prevent us
from fully admitting a new paradigm in computer science. A paper
fleshes out in detail clarifications against the CTT:

The classical view of computing positions computation as
a closed-box transformation of inputs (rational numbers or

3 More on these mechanisms and on the limitations of oracles can be found in (Martin,
Magnaudet and Conversy, forthcoming).
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finite strings) to outputs. According to the interactive view
of computing, computation is an ongoing interactive process
rather than a function-based transformation of an input to an
output. Specifically, communication with the outside world
happens during the computation, not before or after it. This
approach radically changes our understanding of what compu-
tation is and how it is modelled. The acceptance of interaction
as a new paradigm is hindered by the Strong Church-Turing
Thesis (SCT), the widespread belief that Turing Machines
(TMs) capture all computation, so models of computation
more expressive than TMs are impossible (Goldin and Wegner,
2008).

In other words, the strong CTT stipulates that a TM could solve
all computational problems and could compute anything that any
computer can compute. Wegner argues that Turing himself would
have denied it, referring to Turing’s famous paper (Turing, 1937), as
he did not only introduce TMs (calling them automatic machines, or
a-machines) but did also introduce choice machines (c-machines),
extending TMs by allowing a human operator to make choices during
the computation. Turing did not view c-machines as reducible to
TMs, suggesting other forms of computation might exist. Goldin
and Wegner also like to remind us that the CTT applies only to the
computation of functions rather than to all computations:

Function-based computation transforms a finite input into a fi-
nite output in a finite amount of time, in a closed-box fash-
ion. By contrast, the general notion of computation includes
arbitrary procedures and processes—which may be open, non-
terminating, and involving multiple inputs interleaved with
outputs (Goldin and Wegner, 2008).
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For the sake of clarity, Goldin and Wegner propose to formu-
late the assumptions of the CTT in their proper formulation free of
extrapolation (Goldin and Wegner, 2008) explicitly:

• i. “All algorithmic problems are function-based.”
• ii. “All function-based problems can be described by an

algorithm.”
• iii. “Algorithms are what early computers used to do.”
• iv. “TMs serve as a general model for early computers.”
• v. “TMs can simulate any algorithmic computing de-

vice.”
• vi. “TMs cannot compute all problems, nor can they do

everything that real computers can do.”

One reason the strong CTT is “impossible” (Eberbach, Goldin
and Wegner, 2004) is that no computable function would determine,
given some finite amount of a priori information, all the real-world
factors that are necessary to ensure the safe arrival of a car at its desti-
nation. An assertion to the contrary would endow TMs with the power
to predict the future. Therefore, Wegner introduced interaction as
a new paradigm, based on an empiricist approach (Wegner, 1995), to
broaden algorithmic problem-solving. The reason is that Wegner and
his followers take computing machines to be about physical processes,
chaotic in nature (Siegelmann, 1995), requiring demanding precision
to be controlled (Hartmanis, 1994). Superposed layers of abstractions
allow us to describe and control those physical and chaotic computing
machines. The challenge is then to bridge the gap between all those
layers of abstraction, starting with the lowest physical level. A typical
problem we want to solve with computers but not computable in the
classic sense would be, e.g., the problem of driving home:

the problem of driving home from work is computable—by
a control mechanism, as in a robotic car, that continuously
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receives video input of the road and actuates the wheel and
brakes accordingly. This computation, just as that of operating
systems, is interactive, where input and output happen during
the computation, not before or after it (Goldin and Wegner,
2008).

Goldin and Wegner argue that such a notion of computation does
find its counterpart neither in the theory of computation nor in the
concurrency theory. The motivation that goes hand in hand with this
discussion against the strong CTT is a reflection on algorithms and
the scope of algorithmic problem-solving. Knuth has given a classic
definition for algorithms: “An algorithm has zero or more inputs, i.e.,
quantities which are given to it initially before the algorithm begins”
(Knuth, 1968). Following a recipe (Knuth, 1968), for example, does
not actually involve algorithmic problem-solving. To know how to mix
the ingredients properly, one needs to adapt to dynamic variables and
feedback, such as humidity conditions and the progressive evolution of
the texture of the paste that are not pre-given values before execution.
To Wegner, that kind of feedback does not belong to the function-
based mathematical worldview. The problem of driving home from
work, like baking following a recipe, is also among those problems
that Knuth meant to exclude from his definition.

3.2 Account for interaction

This leads us to Wegner’s account for interaction:

Computational problem solving requires open testing of as-
sertions about engineering problems beyond closed-box math-
ematical function evaluation. Therefore, we have proposed
interactive computing as an empiricist model that expands
computational problem solving from algorithmic TM models
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and functional input-output to broader concepts of interleaved
dynamic streams and observable interaction with the environ-
ment (Wegner and Goldin, 2006).

In Wegner’s perspective, interactions are more powerful than TMs
with finite initial inputs. TMs with oracles and unbounded (dynam-
ically extensible) input streams model more accurately interactive
systems than traditional Turing machines. Interactive systems react
dynamically to external events. They are also related to the passage of
external time. By delaying the binding time of inputs so that they can
occur during the computation (rather than only at the beginning) and
modelling reactive processes (Manna and Pnueli, 1992) by infinite
computations (Thomas, 1990), the modelled entities are extended
from algorithms to persistent objects and concurrent processes (Mil-
ner, 1999).

Wegner wonders if Milner himself avoided questioning whether
the computation in CCS and the pi-calculus went beyond Turing ma-
chines and algorithms (Wegner and Goldin, 2003). The question could
remain whether Wegner takes interaction as a super-calculus/super-
algorithm or as a radical shift from TMs. In other words, to what
extent is “interaction more powerful than algorithm” (Wegner, 1997)?
In fact, Wegner’s claim is sharp. In contrast with Milner, Wegner’s
focus is not on concurrency between computing processes. Instead, he
focuses on the complexity of the triggering of external events outside
the machine: “Interactive systems are grounded in an external reality
both more demanding and richer in behaviour than the rule-based
world of non-interactive algorithm” (Wegner, 1997). He strikes the
difference between closed and opened systems, the latter being impos-
sibly wholly described. This impossibility makes interactive systems
mathematically problematic: they lack completeness.
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The comfortable completeness and predictability of algorithms
is inherently inadequate in modelling interactive computing
tasks and physical systems. The sacrifice of completeness is
frightening to theorists who work with formal models like Tur-
ing machines [. . . ]. But incomplete behaviour is comfortably
familiar to physicists and empirical model builders. Incom-
pleteness is the essential ingredient distinguishing interactive
from algorithmic models of computing and empirical from
rationalist models of the physical world (Wegner, 1997).

From this, Wegner concludes that computing systems should not
be thought of as algorithms but as interfaces, views, and modes of use,
definable as behaviours to be specified. Consequently, an ontological
question is also at stake: in what terms should the external world be
modelled: as atomic objects and events? As processes and flow? For-
mally, Wegner’s account of interaction has led to the development of
Persistent Turing machines (PTMs), a model of sequential computa-
tion, and the result that multi-stream interaction machines (MIMs) are
more expressive than sequential interaction machines (SIMs) (Goldin,
2000; Goldin, Smolka et al., 2004). Wegner and Goldin trace back the
idea that interaction is not expressible by or reducible to algorithms
at the closing conference on the 5th-Generation Computer Project in
the context of logic programming. Reactiveness of logic programs,
realized by the commitment to a course of action, was shown to be
incompatible with logical completeness (Wegner and Goldin, 1999).

3.3 Legacy

Wegner’s work has been criticized, the main objection being that in-
teraction machines can be proved equivalent to TMs. The objections
are focused on the defence of the Church-Turing thesis (Cockshott
and Michaelson, 2007; Prasse and Rittgen, 1998), and assume that
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introducing an interactive computing paradigm denies the results of
Church and Turing’s work. But this assumption cannot be taken for
granted: no one denies that TMs and lambda calculus account for
effective computation. Both formalisms define the intuitive notion
of an algorithm. The Church-Turing thesis will only be shaken once
someone presents an alternative formal account of an effective proce-
dure. Due to semantic ambiguities, some have interpreted Wegner’s
work as challenging the Church-Turing thesis. First, Wegner charac-
terizes interaction as more powerful than algorithms and TMs. What
“powerfulness” precisely refers to is unclear. We will say more about
this in the next section (section 4).

Second, there seems to be another semantic ambiguity or al-
leged identity between “computing” and “computation”: “Wegner
(and Eberbach) say that it is impossible to describe all computations
by algorithms. Thus, they do not accept the classic equation of algo-
rithm and effective computation” (Cockshott and Michaelson, 2007).
In the former quoted sentence, a core assumption uses interchange-
ably “computation” and “computing”. But Wegner means that it is
impossible to describe everything in computing by algorithms. By
“computing”, he is referring to what computers do broadly, not to Tur-
ing computation in a narrow sense. Therefore, the conclusion made in
the quoted sentence does not follow: the identity between an effective
computation and an algorithm is not put into question by Wegner.

3.4 Issues for an account of current computers

We are interested in the way Wegner broadens the notion of interac-
tion. It is not strictly referring to communicating processes within
a computing machine. Possible complex interactions with the environ-
ment and the dynamic between inputs and outputs during execution
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are considered. However, although debunking the focus of the CTT
by stating that interaction is more powerful and expressive than al-
gorithms, Wegner’s work is enclosed in a field of discussion framed
by the theory of computability. Furthermore, we still need a way of
describing the very mechanisms we are interested in to be provided
with a mechanistic account of current computers. This is no surprise
since Wegner’s work aims primarily to reflect on the theoretical limits
of classic mathematical tools, e.g., on notions like completeness.

4. Why the interactive models identified do not
provide us with an answer

We have reviewed the conceptualization of interactive systems in
theoretical computer science. We want to defend that these approaches
cannot answer the epistemic question asked by philosophers about
what current computers are. There are two reasons for this. First, as
we have seen, these conceptualizations focus on whether a formal
model for interaction is irreducible to a Turing machine and, if so,
whether this is a threat to the Church-Turing thesis. This deprives
us of a level of description to explain the mechanisms that allow
a computing system to be interactive. We propose to detail here in
section 4 the problems posed by the debate on reducibility. We end the
section by mentioning a distinction currently offered in the literature
that highlights the limits of a formal approach. It is a distinction,
mostly worked by Miłkowski, opposing mechanistic computational
explanation and model of computation.
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Interaction as concurrent
communicating systems

Interaction as extended
Turing Machines

Interaction as a new
paradigm

Motivation

Provides new logical

foundations to fit new

engineering challenges,

especially concurrency

Extends the TM

model to account for

interactive devices

Debunks the strong Church-

Turing thesis

Discusses the scope of

algorithmic solving

Prones the need for a new

computing paradigm

Account for
interaction

Information flow

Heterarchical design

No complete prediction about

overall behavior

No end-result

Process calculi

External data needed

during computation

Non-uniformity of programs

Interaction with agents

Infinity of operations

Interactive machines are TMs

with advice

Computers have rich interaction

with the environment during

computing execution,

but this processing

is not merely algorithmic

Uses and
criticisms

First conceptualization of

interaction

Legacy for automata

theory

Inspires the need for a new

paradigm

Puts at the forefront the

Church-Turing thesis

Controversy about

the powerfulness of

the TM

Issues for an account
of interactive computing

Definition of interaction

restricted to specific

properties: concurrency and

communication

Formal oracles cannot

account for the physical

possibility of entering new

data

Issues about powerfulness

and expressiveness constrict the

debate in the realm of

computability theory

Table 1: Sum-up: an overview of explicit theories of interactive computing
systems in theoretical computer science.

4.1 Unclear stance towards interaction and Turing
reducibility

The first problem with the focus on Turing reducibility in the accounts
for interaction is that the stance is not always clear-cut. Milner’s work
leaves us with the following question: to what extent are the new “log-
ical foundations” for interaction distinct from the classic framework?
Irreducibility is not stated in the speech for the Turing Award. There
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is a simple translation of lambda-calculus into pi-calculus, which is
faithful to computational behaviour. Thus, pi-calculus supports func-
tional programming at a higher level of explanation. However, it is
unclear whether any behaviour expressed in the pi-calculus can be
translated into a classic calculus. In a more recent book, The Space
and Motion of communicating agents (2009), Milner introduces bi-
graphs as another formalism for interactive systems. Bigraphs are
proven to have the same expressiveness as Turing machines. It looks
like Milner proposes to revise the principle of Occam’s razor and
praise the plurality of formalisms, models, and frames of explanation:

I reject the idea that there can be a unique conceptual model,
or one preferred formalism, for all aspects of something as
large as concurrent computation, which is in a sense the whole
of our subject — containing sequential computing as a well-
behaved special area. We need many levels of explanation:
many different languages, calculi, and theories for the different
specialisms (Milner, 1993).

It looks like interaction is the new “basic notion”:

Now, what are the new particles, parts of speech, or elements
which allow one to express interaction? They lie at the same
elementary level as the operation of a Turing machine on
its tape, but they differ. For much longer than the reign of
modern computers, the basic idiom of algorithm has been the
asymmetric, hierarchical notion of operator acting on operand.
But this does not suffice to express interaction between agents
as peers; worse, it locks the mind away from the proper mode
of thought (Milner, 2006).

As for the work on extended Turing Machines, does it involve that
interaction is something else, something irreducible to TMs? Does
interaction amount to a classical model of computation with extended
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computational power? The latter claim is possibly controversial by
revising the Church-Turing thesis. In the end, it looks like interaction
is still understood in reference to the classical framework (our italics):
“examples of interactive [. . . ] indicate that the classical Turing ma-
chine paradigm should be revised (extended) in order to capture the
forms of computation that one observes in the systems and networks
in modern information technology” (Van Leeuwen and Wiedermann,
2000).

Criticisms against Wegner show that the criterion of powerfulness
is ambiguous when evaluating a model for a computing system. Does
powerfulness refer to computational power, involving that an interac-
tive model can express uncomputable functions in Turing’s sense? Or
does it refer to the expression of more phenomena? Such ambiguity
could support some misunderstanding about interaction.

In any case, the literature review on explicit theories of interaction
shows that arguments about the powerfulness and equivalence of the
interactive and classic models systematically arise.

4.2 Powerfulness and expressiveness: possible
ambiguities

Ambiguities around the concepts of powerfulness and expressiveness
likely make the debate need clarification. Indeed, there are at least
two ways of understanding them. In any case, the powerfulness of
a model refers to its expressiveness, which is a semantic property. Ex-
pressiveness refers to what can be expressed by a given model. If one
thinks of a model as a formal language, let us say that expressiveness
relates to all the possible sentences one can make in that language.

In a first sense, powerfulness and expressiveness can be under-
stood strictly within computability theory. In that case, the two notions
are used when evaluating a mathematical framework supporting the
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formalization of semantics. What is called “powerfulness” refers to
computational power, and expressiveness refers to a formal criterion
evaluating which functions can be expressed. Turing completeness is
then a possible evaluation criterion for expressiveness, for instance.

Let us say that among the things that could be expressed in
a model are functions (set A) and other things than functions (set
B). Within each set, some sets include more than others. Within set
A, the set of hypercomputations is more expressive than the set of
computable functions since it includes the uncomputable ones. That
is a way to be more expressive: expressing more functions. How-
ever, framing expressiveness and powerfulness as possibly only about
computable functions would seem odd to engineers and computer
scientists familiar with other formalisms than those related to com-
putability theory. Nevertheless, objections about interaction theories
frame the debate in reference to computability theory.

In a second sense, one can consider the powerfulness and ex-
pressiveness of a model outside the strictly formal computability
framework. Since a model must represent, according to specific objec-
tives, a phenomenon of reality or, say, a system, we can understand
the powerfulness of a model as a good match between the model and
what is modeled.

Therefore, in that broader sense, a model is expressive, given
some purpose, if and only if it describes all phenomena required for
that given purpose. In that case, the value of the model and concerns
about its expressiveness depend on stated goals. From an engineering
perspective, for example, a model is valuable to the extent that it al-
lows engineers to think of future systems design easily. In this case, the
value of the model could be evaluated, e.g., in terms of usability (ef-
fectiveness, efficiency, and satisfaction (ISO, 2018)). From a scientific
perspective, the aim is to make good predictions about a system. The
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two perspectives are rarely used in isolation since good engineering
design requires some science, and good science often relies today on
some engineering (Lee, 2017). From the perspective of the philosophy
of science and given scientific explanation standards, a good model
for a phenomenon rightly describes the mechanisms at stake (Glen-
nan, 2002; Machamer, Darden and Craver, 2000; Miłkowski, 2016).
Of course, other possible values for models, from other perspectives,
could be found.

To go back to Wegner (Goldin, 2000; Wegner, 1995; 1997; 1998),
we argue that this distinction between a narrow and broad sense of
expressiveness clarifies criticisms made against him.

In a broad sense, one can interpret Wegner’s new paradigm as
follows: Wegner considers his interactive model more expressive
than a TM by having his model describe other things than Turing
computations. Wegner’s model could then describe more phenomena
than a TM. It would not go against the Church-Turing thesis, which
remains valid to account for algorithmic problem-solving through
effective procedures.

But in a narrow sense of expressiveness, one can interpret
(wrongly, we think) the possibility of a new paradigm as follows.
Wegner and the tenants of Reactive Turing Machines could think of
their interactive model as more expressive than a TM, allowing their
model to execute more functions, even some of them being uncom-
putable functions in the sense of the Church-Turing thesis, solving
the halting problem. In that case, the claim would indeed be contro-
versial. The bold claim would be the following: a TM is not only
providing an account for algorithmic problem-solving through effec-
tive procedures but it could also be extended to account for other
non-algorithmic processes, solving the uncomputable. Interaction
would be some super-calculus, extending the calculative power of
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the original TM to account for interaction. It would be satisfactorily
modeled with a TM, only given more calculation power. It would go
down the track of Accelerating Machines or Super-Turing Machines,
able to calculate more than Turing’s computable functions (Copeland,
2002; Copeland and Shagrir, 2011; MacLennan, 2009).

We argue that a theory of interaction does not need to embrace
the hypercomputation view. Part of an interaction model could be re-
duced to the classical TM, but some extra elements needed to express
interaction cannot be reduced to an a-machine. That does not mean
interactive models have super computational power to solve unde-
cidable problems. It simply means interactive systems do things that
a TM cannot do. It is possible to admit they do other things without
implying they compute uncomputable functions.

4.3 What formal models of computation cannot do:
providing a mechanistic explanation of computing

So, do we have a good theory about interactive computers? Do we
understand what they are? A natural and common way to go is to
reduce the question of what interactive computers are to what interac-
tive computation is. Initially, the first models of computation emerged
through computability theory. They served as answers to an abstract
mathematical problem, namely the formalization of the intuitive no-
tion of an algorithm. They had nothing to say about computers, as
computers did not even exist at the time. Since the computability era,
models of computation like the Turing Machines have been exported
outside their original scope to serve as a basis for theoretical computer
science. Some models of computation (Turing Machines) have even
helped to reflect on computers. It is no surprise since computers were
thought to be precisely the kind of machines that implement computa-
tions. Models of computation have then evolved, accounting for new
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desired properties to be integrated within the classical framework. In
computer science, what makes a model of computation valuable is
related to the formal properties it expresses. Once those formal proper-
ties are at hand, they allow further procedures to be acted upon them,
especially system verification and certification. In the end, models
of computation serve as tools used to support and verify a system’s
design. These models belong to a particular abstraction level: they do
not intend to model the system as a whole and the way it works. They
focus on verifiable properties, upon which proofs that guarantee the
outputs of the system are built. Verifying formal properties is different
from investigating why the system behaves the way it does. They
are two different tasks. The former task (verification) belongs to ap-
plied mathematics. It describes abstract computations through formal
models by focusing on specific properties. The latter (understanding
computing behaviour) is the question the philosopher begs when ask-
ing what a computer is. It requires something else than task-oriented
formalizations of properties abstracted away from any physical mech-
anism. Philosophers of computing need to make sense of the overall
behaviour, which requires combining other levels of abstraction. The
reason is that an account of computing behaviour calls upon the de-
scription of how computation can be carried out: in other words, it
requires the description of execution on some computer architecture.
Computations and their models belong to a level of abstraction inde-
pendent from implementation detail. Computations, as already coined,
are “medium-independent” (Klein, 2020). On the contrary, to have
a model of some execution belongs to a lower level of abstraction,
where minimal references to the devices that allow the execution are
made. There is no need to dig into fine-grained implementation details
to make sense of computing behaviour in mechanistic terms.
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The formal debate on model equivalence and powerfulness leaves
us needing more building blocks to figure out an explanation for in-
teractive computing: what makes it possible, and what mechanisms
support it? A helpful distinction here capturing why we lack the
right tools is a recent distinction in the literature between models of
computation (formal) and mechanistic explanations of computing. It
deserves attention in the context of understanding interactive comput-
ing. Questioning model equivalence belongs to formal mathematics;
it does not aim at providing a mechanistic account of the comput-
ing phenomena. Interactive models of computation propose an upper
layer of abstractions to formalize specific properties but do not hint
at how interactive computation is carried out. We suggest we need to
adopt a different explanatory focus, departing from the perspective
adopted by models of computation and understanding how interactive
computation can be executed.

Such lessons have just started to be drawn. They have motivated,
for example, distinctions between computational models and compu-
tational explanations (Klein, 2020) or between models of computation
and computational mechanisms (Miłkowski, 2014). The lesson drawn
is that formal models of computing systems do not provide us with the
appropriate and complete level of description to build an explanation,
which is expected to identify the relevant mechanisms at stake. More
precisely, an explanation for computing phenomena requires bridging
a high-level description of a computation and its blueprint (Miłkowski,
2011; 2016). The approach is based on the standard of mechanistic
explanation in science, coupled with the idea that a computational
process is intrinsically mechanistic:

Computational explanations, according to the mechanistic ac-
count are constitutive mechanistic explanations: they explain
how a mechanism’s computational capacity is generated by
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the orchestrated operation of its component parts. To say that
a mechanism implements a computation is to claim that the
causal organization of the mechanism is such that the input
and output information streams are causally linked and that
this link, along with the specific structure of information pro-
cessing, is completely described (Miłkowski, 2014).

If one is looking for a mechanistic explanation of a computing
process, Miłkowski argues that a model of computation may be insuffi-
cient. The reason something is missing is that a model of computation
is not strongly equivalent to a mechanism:

There are two ways in which computational models may cor-
respond to mechanisms: first, they may be weakly equivalent
to the explanandum phenomenon, in that they only describe
the input and output information, or strongly equivalent, when
they also correspond to the process that generates the output
information (Miłkowski, 2016).

The difference between strong and weak equivalence captures
a difference in causal completeness. The formal models of computa-
tion are on the side of models that are weakly equivalent to a mech-
anism: “formal models cannot function as complete causal models
of computers. For example, to repair an old broken laptop, it is not
enough to know that it was (idealizing somewhat) formally equivalent
to a universal Turing machine.” (Miłkowski, 2016). An example helps
to flesh out the need for such distinction and turns again to the Turing
machine:

Turing machines were not invented to be implemented phys-
ically at all, but some people still build them for fun. [. . . ]
Imagine a physical instantiation of a trivial logical negation
Turing machine, built of, say, steel and rubber and printing
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symbols on paper tape. Its alphabet of symbols consists of
“F” and “T.” If the machine finds “T” on its tape, it rewrites it
to “F” and halts; if it finds “F,” it rewrites it to “T” and halts.
Let us suppose that the machine’s head is so old and worn out
that it tears the paper tape during the readout. As a result, no
symbol will appear. [. . . ] Only when we describe the Turing
machine literally, as a causal system that has a particular causal
blueprint (engineering specifications of how it is built), can we
causally predict such a breakdown. [. . . ] Why are breakdowns
and malfunctions so important? They help us discover the
causal complexity of the system. [. . . ] an abstract model of
computation will not predict all the possible outcomes of the
breakdown, as it abstracts away from a number of the system’s
causal characteristics. So it will not tell us what is going to
happen with the head; it will only say that the computation
will no longer be correct (Miłkowski, 2011).

Thus, Miłkowski invites us to consider a new project in the phi-
losophy of computing: “it is necessary to acknowledge the causal
structure of physical computers that is not accommodated by the mod-
els used in computability theory” (Miłkowski, 2011). To the best of
our knowledge, such a project to account for interactive computing
has still not been carried out to flesh out the mechanisms at stake. If
philosophers of computing were to proceed in that direction, two crite-
ria for a good explanation of a computer proposed by Miłkowski could
offer some guidance. First, such an explanation should be complete,
in the sense of a complete causal model where causally relevant parts
and operations are specified (Miłkowski, 2014). Second, a good ex-
planation for computing should explain the competence of the system:
“By providing the instantiation blueprint of the system, we explain the
physical exercise of its capacity, or competence, abstractly specified in
the formal model” (Miłkowski, 2014). For example, it would be nec-
essary to be able to explain in mechanistic terms what the behaviour
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of an oracle corresponds to. This would be equivalent to explain-
ing which mechanisms allow data arrival, launching, interrupting, or
pausing machine processes.

Conclusion

We started from the need to update a question in the philosophy of
computing: what is a computer? Today’s computers are highly inter-
active, so the question can be rephrased more precisely: what is an
interactive computing system? It is common to understand computers
in terms of existing models of computation, hypothesizing that a com-
puter is primarily a machine that carries out computation. Therefore,
the working hypothesis has traditionally answered the initial question
by asking what computation is. As already noted, this shift should
not be taken for granted. There are, however, and the length of the
paper does not allow it, historical and epistemological reasons for
this shift that have been described and discussed (Daylight, 2014;
Haigh and Priestley, 2020; Mol, 2018). We have chosen in this pa-
per to ask ourselves if the shift is relevant in the case of interactive
computing: do we understand what an interactive computer is by ques-
tioning the formal models proposed in theoretical computer science
for interaction? Our literature review shows that there are better paths.
There are two reasons for this. First, the conceptualization of inter-
active systems in theoretical computer science has focused on their
comparison with the Turing machine (and sometimes other classical
models), putting forward formal questions about powerfulness and
equivalence of models that do not clarify the singularity of interactive
systems from an epistemic point of view (rather than formal). There
is an inherent difficulty in looking for an explanation of a computing
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phenomenon in a formal model: it needs more bricks to describe the
mechanisms at stake, at a level of abstraction operating the junction
between a high-level formalism and the blueprint. This work does not
lead us to an aporia but to a research program in the philosophy of
computing: we must produce the right level of explanation for interac-
tive computing.4 This implies an identification of the mechanisms at
play that make possible the interaction between processes within the
computing machine (whether there are to be thought of as physical or
computational processes, or a mix of both5) and the environment. The
components of such a mechanism are to be identified and described
at a level of abstraction that allows a satisfactory reference to the
implementation.
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