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Abstract
Machine learning and essentialism have been connected in the past
by various researchers, in order to state that the main paradigm in
machine learning processes is equivalent to choosing the “essential”
attributes for the machine to search for. Our goal in this paper is to
show that there are connections between machine learning and essen-
tialism, but only for some kinds of machine learning, and often not
including deep learning methods. Similarity-based approaches, more
connected to the overall prototype theory, spanning from psychology
and linguistics, seem more suited for pattern recognition and complex
deep-learning issues, while for classification problems, mostly for
unsupervised learning, essentialism seems like the best choice. In
order to illustrate the difference better, we will connect both paths
to their sources in other disciplines and see how human psychology
influences our decision in machine-learning modeling as well. This
leads to a philosophically very interesting consequence: even in the
setting of supervised machine learning, essences are not present in
data, but in targets, which in turn means that the categories which
purport to be essences are in fact human-made, and hand-coded in
the targets. The success of machine learning, therefore, does not give
any substantial evidence for the independent existence of essential
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properties. Our stance here is to state that neither the existence nor
the lack of “essential” properties in machine learning can lead to
metaphysical, i.e., ontological claims.

Keywords
essentialism, machine learning, accidental properties, similarity-based
approach, pattern recognition, modal necessity.

Essential and accidental properties: introduction

The purpose of this paper is to show that the existence of essential-
like features in machine learning, or the lack of them, cannot

provide an ontological commitment.1 Researchers have connected
machine-learning practices with essentialist and anti-essentialist
stances, but we feel that such claims ignore that both “essentialist”
and “anti-essentialist” paradigms in machine learning are both influ-
enced by human psychology and have no real consequence on the
verification of whether there are essential properties in nature or not.2

The outline of the paper is as follows. First, we will give a brief
overview of what philosophical essentialism is and mention the scarce
research on (anti-)essentialism in machine learning. Next, we will
provide insight into the basics of machine-learning paradigms, namely
supervised and unsupervised learning. The notion of essential proper-
ties is often connected to supervised learning, but we would like to

1 The authors would like to thank the anonymous reviewers for their detailed analyses
and insights.
2 It is necessary to distinguish between ontological commitments regarding nature and
ontological commitments that are necessary in every AI system (we call this difference
an ontological gap). The former are the subject of this article, and the latter were
analyzed by Krzanowski & Polak (2022a; 2022b).
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find out why, so we will connect it to psychological essentialism and
the development of human epistemological stances. We will notice
that prototype theory seems closer to human understanding, and it can
be seen as present in both supervised and unsupervised paradigms,
even though they might be a better fit for the latter. The notion of
a feature vector, as a collection of properties, will be connected to
psychological prototypes. Last, we will observe how in both super-
vised and unsupervised learning, the human factor involved guides
the learning, but this cannot be equated with the existence or non-
existence of essentialism. Namely, some supervised tasks are better
for some real-life or mathematical problems, while some unsuper-
vised tasks are better for others. The question of essentialist-like or
anti-essentialist paradigm here is just a question of using the right tool
for your problem, and not an ontological consequence.

Philosophical essentialism

An essential property of an object is a property that an object must
have, while an accidental one is the one the object happens could have,
but that it could lack. That is, in modal terms,3 we are talking about
necessity and possibility,4 respectively (Robertson Ishii and Atkins,

3 Standard modal characterizations have been disseminated with the works of Ruth
Barcan Marcus and Saul Kripke. Kripke’s work on semantics is taking the truth of
a formula relative to a possible world, since its truth value depends on what is true
in accessible world. See Barcan Marcus (1993) for a modality synthesis and Kripke
(1972) for Kripke semantics.
4 There are, of course, differences between logical and (meta)physical possibilities.
Something might not be a logical contradiction, but still be (meta)physically impossible,
i.e., not conforming to the laws of nature, for example, a man travelling faster than the
speed of light. The exact details of such classifications, especially between physical
and metaphysical possibilities, are a matter of debate.
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2020): an object is going to possess the essential property in all pos-
sible worlds, but for an accidental one, there is a possible world in
which an object lacks such a property. Essentialism is a standpoint
in which (at least) some objects have (at least some) essential prop-
erties (Robertson Ishii and Atkins, 2020). For example, an essential
property of Socrates is to have originated from his parents but is not
essential for him to have brown hair. An essential property of a dog
is certainly not brown hair since there are dogs of other colors. In
philosophy, some essential properties are not a matter of much debate.
For example, a dog had to have some biological origin. Canis canis
is also a dog. But in order to pursue the matter further, there might
be various objections to candidates for essential purposes.5 Often,
a dog is considered a “wolf-like descendant”, where various breeds
might not conform to this ideal, along with the notion of “having an
upturning tail”.

The former is the reason why there are various kinds of essen-
tialism in philosophy. Standard Aristotelian essentialism also deals
with necessities, and in his categories, he was researching proper-
ties that all the members of the category have in common, without
which, they cannot be members of that category.6 One of the most
famous criticisms comes from Wittgenstein,7 who observed the debate
from a linguistic angle and stated that words can mean innumerable

5 A concise description of the debate is provided by Cartwright (1968, p.615): “What
are the essential attributes of, say, Dancer’s Image? No doubt it will be counted essential
that he is a horse and accidental that he was disqualified in this year’s Kentucky Derby.
But what of the attribute of being male, or of being a thoroughbred, or of not being
a Clydesdale stallion? Here, I suppose, essentialists may disagree. Indeed, a reasonable
essentialist might well take the position that these are hard cases that admit of no clear
decision.”
6 For more details on Aristotelian essentialism, see Aristotle (2014) and Matthews
(1990).
7 See Cohen (1968) for more details.



Machine learning and essentialism 175

things depending on their use, paving the way to modern pragmat-
ics. Probably the most common standpoint takes into account that
both minimal and maximal essentialism apply. Maximal essentialism
states that all of any given object’s properties are essential to it, while
minimal essentialism presupposes that there are no limits to the ways
a given object might have been different from its current actual state,
and the only essential properties seem to be trivial ones, like “being
F” or “being non-F” for any property F and “being self-identical”
(Robertson Ishii and Atkins, 2020). For the purpose of this paper, we
will consider the most common stance as our starting point: maximal
and minimal essentialism both hold. The mentioned doctrine that at
least some objects have at least some essential properties is the most
common one (Robertson Ishii and Atkins, 2020).8

Previous work on machine learning and essentialism dealt with
various types of machine learning under the same hood, connect-
ing them often to essentialist ideas. Works of Pelillo (2013), Pelillo
and Scantamburlo (2013) seem to be the most prominent ones. Tunç
(2015) follows Pelillo’s (2013) ideas but mostly focuses on epistemol-
ogy and inductive inference, emphasizing abstracting, idealization,
and theoretical variables in machine-learning research. Duin (2015)
provides an anti-essentialist approach in pattern-recognition systems,
claiming that in most of the applications in pattern recognition, there
is no known, small set of essential features (a notion we agree with).
Our goal is to show how various cases of essentialist-like and non-
essentialist-like stances can be seen manifested in machine-learning
choices, but that does not mean we are talking about real essentialist
or anti-essentialist ontology.

8 Explicitly stated by Mackie (2006). For more details about various types of essential-
ism, see (Robertson Ishii and Atkins, 2020).
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Machine-learning basics

Machine learning, as a part of artificial intelligence and computer
science, is a field of approaches and methods that use data in order to
improve their performance on some problems. Artificial intelligence
can be seen as a certain type of philosophical engineering (Skansi,
2018, p.vii): we want “to build machines that can think, [. . . ] under-
stand the meaning, act rationally, cope with uncertainty, [. . . ] handle
and talk about objects”. In a nutshell, we are replicating standard
philosophical concepts. It is no wonder that philosophical concepts
are deeply embedded in their methods as well but may seem hidden
underneath technical layers.

In machine learning, data is usually split into training and test
data, the same way a student learns methods and approaches to some
problems and gets previously unseen ones in an exam. Such an ap-
proach, compared to learning in the presence of a supervisor or
a teacher, is called supervised learning: an algorithm learns from
labeled data and is able to predict outcomes on previously unseen
data. For example, if we had a dataset consisting of various pictures
of animals, and we wanted to train the algorithm to recognize cats,
we would want it to be able to somehow point out what is essential
for an animal to be classified as a cat. An important part of supervised
learning is therefore the act of classification: a certain object of in-
terest possesses or does not possess certain property, i.e., it is or is
not a member of a class. A certain image of a dog might be marked
as 98.6% dog if it is very close to all of the properties that seem to
be essential for classifying a picture of an animal as a dog. However,
a cat might have some properties, such as four legs and a tail, but that
would be a low percentage. In another class of problems, there are
regression problems, in which the algorithm is predicting continuous
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values. For example, given previous real-estate prices in a certain area,
predict the prices for the next couple of years. Here, we would be
dealing with real numbers instead of binary Boolean classifications.9

To summarize, a supervised machine-learning algorithm receives
a set of training data points (a point in space where the axes are the
properties given) and labels (row vectors), and in this phase, the algo-
rithm creates a hyperplane—a decision boundary that helps classify
its data points—by adjusting its internal parameters (Skansi, 2018,
pp.55–56). This phase is the training phase that receives inputs as row
vectors with corresponding labels (called training samples). In the
next, predicting phase, the trained algorithm takes a number of row
vectors, but this time without labels and creates the labels with the
hyperplane (Skansi, 2018, p.56). In other words, “the learner receives
a set of labeled examples as training data and makes predictions for
all unseen points, [. . . a scenario commonly] associated with classifi-
cation, regression, and ranking [i.e. ordering items to some criterion]
problems” (Mohri, Rostamizadeh and Talwalkar, 2018, p.6).

Another type of machine learning, unsupervised learning, handles
various datasets without any explicit instructions or labels. That is,
the learner receives unlabeled training data and makes predictions
for all unseen points, and “since, in general, no labeled example is
available [. . . ], it can be difficult to quantitatively evaluate the perfor-
mance of a learner” (Mohri, Rostamizadeh and Talwalkar, 2018, p.7).
Unsupervised learning encompasses a broad definition of learning
without labels or targets, but this broad definition begs the cognitive
question of how we learn without feedback (Skansi, 2018, p.70). In
the previous case, in order for the computer to learn what is a dog,

9 As a side note, most of the algorithms do not predict using Boolean outcomes such
as 0 or 1 for not being or being a dog, but as a matter of a percentage. In such cases,
we are effectively talking about fuzzy intervals.
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we had to correctly label dogs or provide a list of properties in other
supervised examples. Here, a computer is seemingly on its own: for
example, neural networks10 tend to automatically find structures in the
data by analyzing useful features. Data is often grouped into clusters,
and then it is easy to see the outliers, anomalies (for example, for
fraud detection), associations (for recommender systems), and similar
connections.

We might start to notice something interesting here. First, if we
are telling the computer while we are labeling the data that something
is or is not a certain kind of object, we are effectively taking a certain
essentialist stance. Intuitively, there seems to be something essential
in all of the properties that make a cat a cat. In various cases of
supervised learning, we might list a number of features that we could
consider important. For example, my algorithm might be tracking
pointy ears, four legs, two eyes, and fur. But such an algorithm might
recognize dogs and rabbits as well but miss some dogs without pointy
ears. And we are not even starting to talk about three-legged dogs and
similar “obviously” accidental properties. Second, it all boils down
to starting human decisions. This seems like a trivial claim, and from
a description of supervised learning, it is rather intuitive. Blaming it
on the data might seem like a common excuse in machine learning,
but recently, AI ethics has dwelled on the questions of initial data
handling and responsibilities.11 However, why did we choose some
features on top of others? The answer might lie in human psychology.

10 See Skansi (2018) for an introduction to deep learning.
11 A famous example of an accidental algorithmic breach of ethics includes machine-
learning racism in tagging black people as gorillas. See Zhang (2015).
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Psychological essentialism

Gelman (2004, p.405) describes how once children learn a new fact
about one member of a category, they generalize the fact to other
members of that category, even if they look substantially different. By
four years of age, children display subtlety and flexibility when they
make category-based inductive inferences. For Gelman (2004, p.405),
properties seem to be “fixed at birth”, demonstrated by the following
experiment. A child might learn about a newborn kangaroo that was
switched at birth, and then went to live with goats. The child was then
asked whether the animal would be good at hopping or climbing, or if
would it have a pouch or not. Turns out, preschool children typically
reported that it would have been good at hopping and have a pouch,
something that seems inherent to kangaroos even for children. Such
an understanding seems to appear by about six years of age, and it
might be as early as four years of age: the time when children reason
about animals, plants, and social categories (Gelman, 2004, p.406).

By the age of two, children view causes as vital to what something
is (Gelman, 2004, p.406). This is interesting from a philosophical
standpoint. Causal essentialists hold that a property essentially bears
its causal and nomic relations (Gibbs, 2018, p.2332). Such a stance
constrains what is possible and rules out possibilities where a prop-
erty bears causal and nomic relations differently from how it actu-
ally bears them (Gibbs, 2018, p.2334). It seems that the notion of
a cause and similar notions of origins seems to be closely tied to our
early-childhood understanding of such relationships. There are some
intriguing mistakes here: Gelman (2004, p.406) mentions that children
sometimes can be more “nativist” than adults. For example, five-year-
olds claim that a child switched at birth will speak the language of
their birth parents rather than adoptive ones. We know that this is
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not the case, but it is intriguing to see how an essentialist “feeling”
might not always be correct if we take cognitive development as our
guideline. Causality is central to children’s categories, claims Gelman
(2004, p.406), since it provides consistent domain-specific causal ex-
planations for the properties that members of a category share. That
is, category membership is stable over transformations (a dog cannot
be transformed into a cat), and internal properties seem to be salient
to young children. In a way, this is how computers behave as well:
learning from observations and from their parents and other people.
In the case of supervised machine learning, that is a combination of
a prelabeled dataset and learning from data.

Here, the notion of a feature comes in handy as an individual mea-
surable property. In character recognition, features might be shapes
and pixels, and in voice recognition, frequency, noise, and strength.
In computer vision, we might be talking about blobs, i.e., regions
in images that differ in properties from the rest of the surrounding
regions, for example, in color or brightness. Basically, it is a collec-
tion of information used for future problem resolution. In the case
of classification, this may be compared to children learning about
classes, memberships, and categories. But, how to describe a dog, say,
using words? What are some essential properties the algorithm would
be searching for? For example, a type of face, number of various
body parts, color, etc. Children learn to recognize various members
of the class and then generalize and use this knowledge in novel
situations, i.e., previously unseen examples of that class. We want
the computer to follow a similar process. In order to generalize well,
a good selection of features needs to be selected. In the next section,
we will observe how such a process is followed in machine learning
and how the question of feature selection has important philosophical
consequences.
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Features and prototypes

As mentioned, features tend to be measurable properties that are
successful in discriminating and differentiating between different cat-
egories of data. For example, in face detection (Bishop, 2006, p.3),
we aim to find features that are not only fast to compute but also
preserve useful discriminatory information enabling faces to be dis-
tinguished from non-faces. The study of feature selection finds its
practical needs in machine learning, where a learning algorithm con-
structs a description of a function from a set of input/output instances
through interaction with the world. Machine learning is more con-
cerned with non-continuous features, while pattern recognition deals
with continuous ones. It is not the same, for example, to classify
something as a dog or not, compared to finding a face or another
pattern or blob inside an image (Liu and Motoda, 1998, p.2). Liu
and Motoda (1998, p.2) state that many forms of representations for
machine-learning functions are available, including first-order logic,
which is interesting from a philosophical standpoint, or weighted net-
works, but they have focused on features since they are 1) primitive 2)
convenient 3) independent 4) widely used 5) reasonably general, i.e.,
powerful for many applications.

The first condition is the most important one for a metaphysics
approach, and they define it as “the basic units for defining a problem,
a domain, or a world to be observed, and do not require much effort
from human experts to design them”. Taken into account that feature
selection tasks often fall into the hands of non-metaphysicists, there is
a hunch of an innate human ability to generalize and select something
that might, at least in the layman’s sense of the word, seem essential
for the object in question. Features are also called attributes, proper-
ties, or characteristics and can be discrete, continuous, or complex
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(Liu and Motoda, 1998, p.3). For example, a dataset consisting of
various hairstyles might have a feature of [color], which would take
color names or RGB codes as its discrete value, [hair_length] may be
a continuous numerical value in centimeters or inches, while there
might be a Boolean [is_dyed] with true or false discrete values.

Trying to describe a certain object by finding whether it has or has
not some constitutional properties, along with describing them, is not
a novelty of machine learning. The same formal approach was popular
with the advent of structural linguistics. Since phonology studies its
basic units—phonemes, morphology analyzes morphemes, and syntax
inspects sentence elements such as subjects, objects, and phrases, it
was natural to try to find a basic unit of meaning that would make
semantics an equal member of the formalized grammatical discipline
ensemble.

Semic analysis was the first approach that aimed to find minimal
units of meaning, which later developed into componential analy-
sis within the standard structuralist framework. In particular, Pottier
(1964) analyzed various types of chairs in order to find out what are
the minimal features needed in order to distinguish between them. For
example, they might have a back side or not, might have arms or not,
can be fixed or folding, can have one seat or several seats, etc. One
can see that we are already dealing with both discrete and continuous
values here. A classic example in the componential analysis is how
to describe various words for human beings in various stages of their
lives, taking into account their gender. A man can be described as
[-woman] and [+adult] or [+man] and [+adult]. Here we are deal-
ing with Boolean man/female and adult/not adult, which does not
reflect the fuzzy values of such categories, but structuralist linguistics
was extremely focused on binary oppositions. Next, a woman would
be [+woman] and [+adult] or [-man] and [+adult], a girl would be



Machine learning and essentialism 183

[+woman] but [-adult] or [-man] and [-adult], while a boy could be
described as [-woman] and [-adult] or [+man] and [-adult].12 Such
an approach has been developed and changed but is still used in se-
mantics, which, as one of its tasks, analyzes the internal structure
of a word by finding distinct and minimal components of meaning
(Palmer, 1981, p.108). In such a framework, we might differentiate
our dog from a wolf by finding distinct features. Both are certainly
[+animal] and [+canine], but we might add [+domesticated] to the
dog and [-domesticated] to the wolf. Such choices often seem arbi-
trary and there is no consensus on what the most basic properties of
objects or classes of objects are, and it would also seem necessary to
connect not only machine-learning feature selection with philosophy
but linguistics and psychology as well.

We have mentioned that a strict binarist approach may seem inad-
equate in many cases. Departing from a standard Aristotelian notion
of fixed categories, Eleanor Rosch (1973) introduced the prototype
theory in which there is a graded degree of belonging to a certain
category: some members are more central than others. For example,
whatever essential properties of a bird might be, it seems somehow in-
tuitive that in this—perhaps arbitrary—category there are some more
prototypical members or examples than others: a sparrow is a more
prototypical bird than an ostrich or a penguin. But this seems cultur-
ally anchored in both time and space, an apple is a more prototypical
fruit in Europe, but other fruits might be better examples in Africa,
such as bananas.

In machine learning, a feature does not have to be a binary
Boolean, it can also be seen and created as a certain prototype. For ex-

12 Such a method was formed on the basis of Prague structuralist school dealing
with phonology. A phoneme has a set of discrete properties, for example b would be
[+voiced], while p would be [-voiced], but both would be [+labial] plosives.
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ample, in image recognition, there is a need to give the best prototype
for a category. In the case of supervised learning, if we are training
our models to recognize birds, and we are only using edge-case birds,
we are not using the most generalized and best prototype or a versatile
dataset consisting of central and edge-case members. The majority of
images presented in a labeled training dataset would be close to being
a prototype of the category. If we wanted to recognize apples, a rotten
or a half-eaten apple would not be a prototype but would be a wanted
member of the class, and if we wanted to recognize cats, a one-eyed
cat without ears would not be a prototypical image, but we would
somehow like to get the essentials with our prototypes in order to also
include this as a result. In this case, we would expect percentages
stating the probability that something is a dog or a cat to be higher for
prototypical members, possessing all the necessary features, and less
for edge-case or less prototypical members of a category.

Essentialist paradigm(s) in machine learning

It seems intuitive and obvious that supervised machine learning incor-
porates some kind of essentialism. That is, we are either given discrete
or continuous features in datasets that are used for our predictions,
usually whether something is a member of a class or not. But there are
other kinds of machine learning, and we must not ignore the notion
of unsupervised learning. We have already mentioned unsupervised
learning, in which a model tries to establish regularities, clusters, or
patterns in previously unseen data. This can be compared to the pro-
cess of human learning at an early age, in which a human being tries
to generalize the already acquired knowledge. Consider this, even if
you are getting an unlabeled dataset of weird alien creatures, you will
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most certainly be able to connect similar ones together in groups or
do classifications, even if you do not know what is actually in the
background of your dataset. We would like the computer to do the
same. For example, if we trained our models on a certain map, they
might recognize landmasses, developed areas, forests, or wetlands
and group them together, by finding similarities between them. In
non-visual data, you might be presented with some numbers, say bank
transfers, and you might connect the usual activity into groups, while
the outliers might be suspicious.

Pelillo and Scantamburlo (2013) were one of the pioneers of try-
ing to connect machine learning with metaphysics. For them, the ma-
jority of traditional machine learning techniques are centered around
the notion of a “feature”, which we have observed. However, they note
that there are numerous application domains where either it is not pos-
sible to find satisfactory features, or they are inefficient for learning
purposes. Such examples might include cases when experts cannot
define features in a straightforward way (e.g., protein descriptors vs.
alignments), cases when data are highly dimensional (e.g., images),
situations when features consist of both numerical and categorical
variables (e.g., person data, like weight, sex, eye color, etc.), or in the
presence of missing or inhomogeneous data.

In his overview of pattern recognition, which is mostly unsu-
pervised, Pelillo (2013) states that features are essential properties.
He reports Watanabe (1985) stating that “under all works of pattern
recognition lies tacitly the Aristotelian view that the world consists
of a discrete number of self-identical objects provided with, other
than fleeting accidental properties, a number of fixed or very slowly
changing attributes. Some of these attributes, which may be called
‘features’, determine the class to which the object belongs. Pellilo
(2013, p.2) reaffirms that the goal of a pattern recognition algorithm



186 Kristina Šekrst, Sandro Skansi

is to discern “the essences of a category” and that we should talk
about an essentialist paradigm in machine learning. We have already
mentioned Rosch’s (1973) work on prototypes, which Pelillo (2013,
p.2) uses to illustrate the “multifaceted nature of real-world categories”
and emphasizes that for anti-essentialist stances, relations are in fo-
cus. That, of course, does not have to be the case, the main idea for
anti-essentialism is to claim accidentality: there are possible worlds
in which the object has the property in question and possible worlds
in which it does not. But he does emphasize that the feature-based
aspect is a reductionist position since objects are seen in isolation and
overlook relational or contextual information (Pelillo, 2013, p.1).

The notion of a feature vector is often used in machine learn-
ing: an n-dimensional vector that serves a purpose of a collection
of features. For example, just as a red/green/blue combination will
form a single color, a certain combination of features will be used
in machine-learning tasks to better identify objects or predict val-
ues. Pelillo (2013, p.3) emphasizes that the community has focused
on feature-vector representations, rather than on single, standalone
features. In computer vision and pattern recognition, each object is
described in terms of a vector of numerical attributes and mapped to
a point in a Euclidean vector space, so that the distances between the
points reflect the similarities and dissimilarities between the respec-
tive objects (Pelillo, 2013, p.3). Pelillo emphasizes the recent trend
in similarity-based techniques, which are still not challenging the tra-
ditional paradigm but work with graphs or structural representations
to find objects or values that seem to be closer according to some
criterion (Pelillo, 2013, p.4). We have to note that such an approach is
analogous to a prototypical relationship, where members are grouped
around a prototype in a certain graph-like manner. A green apple is
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more similar to the prototype of a red apple than a red strawberry, and
if such connections would be shown as a weighted graph, then we
would expect a less expensive traversal to a red apple.

Accidental properties in machine learning

The processes and disciplines of feature selection and extraction show
us that there is a strong presupposition that something as essential as
a feature exists. There is no doubt that machine learning today is still
enveloped in a strong essentialist paradigm. In feature engineering,13

a system automatically discovers representations needed for feature
detection. For example, it finds close points (neighbors) in a graph
and clusters data around, say, percentages. If feature engineering is an
essentialist stance, what kind of essentialism is it? It seems that is not
maximal, but also not minimal, we would expect it to lie somewhere
in between, judging by its success factor.

Here, what is interesting is that, unlike in human-led feature selec-
tion, automated feature engineering may use features that a philoso-
pher would deem completely accidental, but it would still do a great
job in classification or similar predictions. That is, deep-learning fea-
ture engineering does not have to correspond to some natural kinds or
essential properties: it is not really essentialism, but a certain kind of
accidentalism.

Namely, sometimes, features even outside deep learning that
generate best models are often surprising and maybe even lucky
correlations.14 A famous example is a system (Lapuschkin et al.,

13 For more details about feature engineering, see Zheng and Casari (2018).
14 Some would argue that such processes might fall under the umbrella of unexplain-
able AI, if we are dealing with multiple layers within deep neural networks, but in
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2019) performing horse recognition that learned to cheat by looking
for the copyright watermark in horse images instead of finding some
horse-essential features.15

When it is led by humans, that does not mean that there is an
omniscient metaphysicist in computer engineers deciding what is es-
sential and what is not. There are two important problems in machine
learning. The first one is underfitting, the case in which a model is too
general and does not fit the data property. For example, if we were
doing dog recognition, from the training set, our underfitted model
would consider that necessary features would be to have pointy ears
and tails. In this case, we might recognize cats and rabbits too. An
overfitted model has the opposite problem, it too closely responds
to training data, and it is too specific. Basically, as if you only knew
how to solve problems that appeared in your homework, but you are
unable to solve the same problem when the numbers are replaced with
other numbers. Our model might only recognize white and fluffy dogs
with grey spots on their backs. Such a case might also be a result of
bad feature engineering in the first place. Using automated feature
engineering actually reduces the overfitting of your models, taking
into account the standardized method of figuring out which one of
your selected features might cause problems for your model to be too
specific. We might imagine a case in which that also might seem like

the worst cases, “unexplainable” is not impossible to test or retrace, just not easy. We
deem that the problem is not in unexplainability, but usually in the human inability to
comprehend the data or the wrong (perhaps “accidental”) approach taken.
15 There are various legends and “folk tales” stating variations of a tank story, in
which Russian tanks were photographed during daytime, unlike British tanks, so the
AI system used that to its advantage. Most of such stories are farfetched but they do
serve a purpose of illustrating a possible way an AI system might come to the right
conclusion using the wrong method.
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an essential property, but not for machine-learning purposes. Proper-
ties chosen or discovered might not be relevant or essential but make
the model perform well.

Machine learning or essentialism?

Our previous conclusion might imply two separate things. Either there
is an anti-cybernetic stance in which human learning that encompasses
a certain kind of innate essentialist knowledge is a different process
in machine learning, or that, for practical purposes, knowledge of
essential properties is not a necessary prerequisite for everyday clas-
sifications and predictions. The latter seems more intuitive. It does
seem that a similarity-based approach, mimicking the prototypical re-
lationships found in psychological and linguistic research, may work
well in various human and machine usages, along with a combina-
tion of properties (features) together with their relations (cf. feature
vectors). For some machine-learning tasks, pure essentialism, often
a binary or Boolean one, works best. We believe that essentialism
and anti-essentialisms are not binary choices a computer scientist
or a philosopher must make in order to describe how processes are
being generated and run in machine learning paradigms today, but it is
a matter of choice for a specific type of task. There is no essentialism
equated with machine learning, but there is both essentialism and
anti-essentialism for specific tasks. For some classification tasks and
simple pattern recognitions, essentialist features are often the best
choice, and for others, systems will work better with combinations of
these properties. For unsupervised learning and pattern recognition,
prototypical systems, i.e., similarity-based approaches, perform better.
A philosophical take here is that, at least in machine learning, there is
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no ontological obligation towards either of these stances, but rightful
usage for rightful tasks. The choice of your machine-learning system,
and therefore, a supervised or unsupervised approach, will depend on
the type of task in question: what performs better. It is just a matter
of technical performance that has no metaphysical consequences of
the existence of essentialism or anti-essentialism.

From a psychological standpoint, Gelman (2005) has shown that
essentialism is present in our everyday choices and is a reasoning
heuristic readily available to both children and adults. As human
beings, we seem to be hard-wired to search for parts and underlying
structures. She claims that preschool children and adults from a variety
of cultural contexts expect members of a category to be alike in
a non-obvious way. That is, we treat “certain categories as having
inductive potential, an innate basis, stable category membership, and
sharp boundaries” (Gelman, 2005). It is no wonder that essentialist
research has emerged as a metaphysical position. However, often, in
our everyday practice, we are proven wrong, and that goes for our
early childhood as well: Gelman’s (2004) example of children being
more nativist than adults. If essentialism might not always be the right
choice for humans in various contexts, then the characterization of
machine learning as an “essentialist” paradigm only reflects our inner
psychological phenomena.

In philosophy, such an idea is present in the stance of conven-
tionalism. Conventionalism seeks to expose conventions likely to be
mistaken for truths (Ben-Menahem, 2006, p.2). This relativistic view
is close to our claim that both supervised and unsupervised learning
are plagued with human psychological categories that do not say any-
thing about the possibility of objective categories, but only that we
might or might not interpret conventions in various ways, even in
essentialist and anti-essentialist terms.
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As we have shown, the dichotomy should have never been the
one about the differences in learning by humans or machines since
these epistemic differences do not exist. The first reason is simple:
machine learning is modeled after human learning, and only after
the initial modeling is fine-tuned to make it computationally feasible.
It is “essentially” the same by design. The differences are, again
by design, accidental and purely due to different hardware/wetware.
The second reason is more cybernetic in nature: if we are to develop
a learning theory, it should be able to be as general as possible. Today
one would never accept a psychological theory that only explains
fear in adults or anxiety in women. Even though we might need to
limit our theory in such a manner until further research is conducted,
we would never accept this to be a completed theory. A theory of
learning which would explain learning in children but not adults
would likewise be incomplete and unacceptable except as a work
in progress. This theory would be expanded to adults, people with
disabilities, and to different cultures. After all, this is supposed to
be a general theory of learning. Even though limiting the theory to
humans might sound appealing, one could speculate that there will be
more than a handful of researchers interested to see how such a theory
applies to apes or dogs. Xenobiologists might take an interest too, as
could AI researchers. Social scientists and cultural anthropologists
might be also tempted to see if such a theory can describe models
of societal learning or cultural integration. The point here is that the
cybernetic call is a very natural force in scientific expansion and
research, one that is to be expected, and one we had seen in a number
of fields, perhaps the most recent and interesting one being social
physics (as a branch of social network analysis). The insights gained
in this fashion not only have huge practical benefits, but they do tend
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to encompass a basic scientific curiosity, which no philosophy of
science can avoid: “they say X and Y are not connected, but what
happens if I use X on Y?”.

The true dichotomy still present is a wholly different one. In fact,
it is the same one that René Descartes described half a millennium ago:
do the categories present in my mind have objective validity?16 The
easiest way to a positive answer is essentialism, which claims that the
categories in our minds are formed via the essential properties present
in the world. And machine learning, a new paradigm where machines
are finally intelligent enough, is believed by many to show exactly
this. If machines can learn the same things we do, then obviously the
categories used are not intrinsically human. If machines can learn
this by crunching data obtained from the world, then the categories
are in fact present in that very data as essential properties. Machine
learning is, on this account, simply a family of algorithms capable of
extracting not just information from data, but essential properties as
well. As we have shown, this view is wrong, since: (i) this could in
theory hold true only for supervised learning, and more importantly
(ii) supervised learning is defined via its use of targets or labels which
are man-made. Since they are man-made, this means that human
annotators bring in their categories “cat/dog”, “animal/non-animal”,
“happy/sad”, etc., and connect this to actual data, e.g., pixel values,
or numeric data. The machine-learning algorithm then extracts this
connection and applies it to previously unseen data. But the essential
properties are not the ones discovered by the algorithm, they are
brought in by human annotators, and do not have to reflect the “real”
ontology at all. Even in the case of unsupervised learning, the features
are being clustered and interpreted by humans, bringing again their
own categories into play.

16 See Descartes (1641; English translation: 1991) for more details.
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Essentialist and anti-essentialist stances are both present in super-
vised and unsupervised learning, but we have pinpointed a couple of
claims. First, supervised learning is easily connected with essential-
ism, but we wanted to pinpoint that it does not bear an ontological
commitment to the existence of such features. Even though the view
itself that humans are creators of essential features in machine learn-
ing might seem trivial, it does not say anything about ontology, but it
says a lot about human psychology. Second, we might talk about the
anti-essentialist stance in unsupervised learning (as Duin (2015) does),
but this again is a strong ontological claim. Our goal was to show that
unsupervised-learning approaches follow the prototypical learning
and categorization model, inherent to human psychology, which also
might be something the model creators are bringing to the model
itself. The choice of supervised or unsupervised methods, which some
might equate with essentialist or essentialist stances, actually does
not exist since the choice depends on the problem we want to solve.
Machine-learning systems do not discover anything about background
ontology, but they do show us human epistemology and psychology
present in seemingly competitive stances.
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