
Galileo’s paradox and numerosities

Piotr Błaszczyk
Pedagogical University of Cracow, Institute of Mathematics

Abstract
Galileo’s paradox of infinity involves comparing the set of natural
numbers, N, and the set of squares, {n2 : n ∈ N}. Galileo (1638), by
setting up a one-to-one correspondence, considers these sets to have
equal number of elements. Then, he characterizes the set of squares as
smaller than the set of all numbers on the intuitive ground that “there
are many more numbers than squares.” Finally, he concludes that
infinities do not comply with the law of trichotomy when compared
in terms of greater–lesser.

Cantor’s cardinal numbers provide a now-standard measure for
sets. Cantor (1897; Engl. transl. 1915) defines the relation greater–
lesser and proves the law of trichotomy for these numbers. When they
apply to subsets of N, any set can be either finite or of the power
ℵ0. Although N includes squares, these two sets are of the same
cardinality.

Cantor’s ordinal numbers measure well-ordered sets. Then,
the same number ω identifies the order type of the sets N and
{n2 : n ∈ N}.

Benci and Di Nasso (2019) introduce specific numbers called
numerosities to measure sets. In that theory, the following claim is true:
numerosity of A < numerosity of B, whenever A ⊊ B. Numerosities,
like ordinal numbers, require some structure on measured sets called
labels.
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In this paper, we present a simplified, self-contained version of
the theory of numerosities that applies to subsets of N with the natural
order and does not refer to labels. This theory complies with Galileo’s
presupposition that when A ⊊ B, then the number of elements in A
is smaller than the number of elements in B. Specifically, we show
that given the numerosity of N is the specific hyperreal number α, the
numerosity of the set of squares is the integer part of the number

√
α,

that is
⌊√

α
⌋
, and the inequality

⌊√
α
⌋
< α holds.

In the second part, we discuss Euclid’s axiom The whole is greater
than the part, praised by founders of the numerosity theory, and
Mancosu’s (2009), the first study that introduced numerosities into a
philosophical debate. To this end, we embed number systems referred
to in the paper—hyperreals, numerosities, Cantor ordinal numbers,
and algebraic interpretation of Euclid’s axiom—in the ordered field
of Conway numbers.

Keywords
non-standard real numbers, numerosities, cardinal numbers, Galileo’s
paradox.

1. Introduction

1.1. Galileo on infinities

In Discorsi e dimostrazioni matematiche: intorno à due nuoue
scienze, attenenti alla mecanica & i movimenti locali. . . (1638), in

a series of dialogues, Galileo Galilei discusses many topics in natu-
ral philosophy. Whether a line consists of points was then a routine
question. Euclid’s Elements and Aristotles’ Physics set up that issue.
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Definition VII.2 of the Elements, “A number (is) a multitude (πλῆθος)
composed of units (μονάων)”, ascertain numbers consist of units. The
question was whether in geometry, the realm of continuity, points,
defined by I.1 “A point is that of which there is no part”, could play a
role analogous to units in arithmetic. Aristotles’ definition that con-
tinuous objects are “divisible into infinitely (ἀεί) divisible divisibles”
(Physics VI.2) introduce infinity into the debate.

Galileo’s position that magnitudes are composed of non quanti
indivisibles drives him to the then-known paradox of infinity of parts
of line segments. Yet, he gives that discussion a new push by turning it
into whether infinities, alike magnitudes, and numbers, are comparable
in terms of greater-lesser. His initial argument is simple: Since one line
can be greater than another, given each contains “an infinite number
of points”, the infinity of points in the longer one is greater than the
infinity of points in the shorter (see Galileo, 1956, pp.30–33).

At this stage, greater-lesser does not mean set-subset relation. The
idea of comparing line segments, rather than their lengths (measures),
originates from the Elements. It was self-evident in the 17th century
and prevailed until the 19th century. The rise of the real number sys-
tem enhanced the process of measuring magnitudes—lines by lengths,
figures by areas, solids by volumes. Both in ancient Greek and 17th-
century mathematics, it was also evident, that line segments were sub-
ject to the law of trichotomy (see section § 5.1 below). Thus, the point
was whether infinities are subject to the same laws as then-common
mathematical objects, such as line segments, natural numbers, or
ratios.

The idea that there is a variety of infinities, one greater than
another, puzzled the discussants. Galileo does not reject the infinity,
instead he concludes that the law of trichotomy does not apply in
that domain: “we cannot speak of infinite quantities as being the one
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greater or less than or equal to another” (Galileo, 1956, p.30). To
clarify this point, he involves natural numbers and states what later
got the name Galileo’s paradox of infinity. He sets up a one-to-one
correspondence between the set of natural numbers, N, and the set of
squares, {n2 : n ∈ N}; in this sense, respective infinities are equal.
He also observes that “there are more numbers than squares;” in this
sense, the former infinity is greater than the latter. Here is the key part
of this dialogue (Galileo, 1956, p.33):

If I should ask further how many squares there are one might
reply truly that there are as many as the corresponding number
of roots, since every square has its own root and every root
its own square, while no square has more than one root and
no root more than one square [...]. But if I inquire how many
roots there are, it cannot be denied that there are as many as
the numbers because every number is the root of some square.
This being granted, we must say that there are as many squares
as there are numbers because they are just as numerous as their
roots, and all the numbers are roots [...] Yet at the outset we
said that there are many more numbers than squares, since the
larger portion of them are not squares.

The conclusion is as follows:

we can only infer that the totality of all numbers is infinite,
that the number of squares is infinite, and that the number of
their roots is infinite; neither is the number of squares less
than the totality of all the numbers, nor the latter greater than
the former; and finally the attributes equal, greater, and less,
are not applicable to infinite, but only to finite, quantities.
When therefore Simplicio introduces several lines of different
lengths and asks me how it is possible that the longer ones do
not contain more points than the shorter, I answer him that one
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line does not contain more or less or just as many points as
another, but that each line contains an infinite number (Galileo,
1956, p.33).

In the dialogue that follows, Galileo also argues that one can not
compare finite and infinite in terms of greater–lesser, as that gives
rise to new paradoxes; “And thus from your ingenious argument we
are led to conclude that the attributes larger, smaller, and equal have
no place either in comparing infinite quantities with each other or in
comparing infinite with finite quantities” (Galileo, 1956, p.33).

1.2. Cantor’s law of trichotomy for cardinal numbers

Georg Cantor, in philosophical digressions spread throughout his
mathematical papers presents himself as the pioneer of a study of
actual infinity. In his view, only Leibniz and Bolzano had approached
the absolute infinity seriously before he did. His biographer, Joseph
Dauben, in the very popular book Georg Cantor. His Mathematics
and Philosophy of the Infinite (1990), upholds this legend. At present,
Cantor is generally considered the founding father of the mathemati-
cal study of infinity. However, there were pre-Cantorian theories of
actual infinity developed within the tradition of geometrical optics,
from Euclid, through Kepler to Descartes (see Błaszczyk, 2020). And
the real challenge for Cantor was Euler’s Introductio in Analysin In-
finitorum (1748) which refers to the study of infinity in its very title
and, obviously, the substance content. Since Euler’s infinite numbers
were inverses of infinitesimals, Cantor made endless attempts to dis-
miss these seemingly strange numbers (see Błaszczyk and Fila, 2020).
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Nevertheless, he neither mentioned Euler as the author of a competing
theory of infinity, nor Galileo and his idea of equality of infinities
based on one-to-one correspondence.

Nowadays, Cantor’s theory of cardinal numbers is a part of the
common mathematical and philosophical education. Therefore, here,
by referring to (Cantor, 1897), we note only the basic definitions
related to Galileo’s paradox. Thus, the cardinal number of a set M ,
M , is equal to the cardinal number of a set N , N , iff there is a one-
to-one correspondence between these sets, M ∼ N . The relation
greater–lesser does not reduce to the relationship of one set being a
subset of another. It is defined as follows: N < M iff there is L ⊂M

such that L ∼ N and it is not the case that N ∼M . Cantor managed
to prove the law of trichotomy for cardinal numbers. Yet, it was far
from trivial, as he observed:

We have seen that, of the three relations a = b, a < b, a > b
each one excludes the two others. On the other hand, the
theorem that, with any two cardinal numbers a and b, one
of those three relations must necessarily be realized, is by
no means self-evident and can hardly be proved at this stage
(Cantor, 1897; English translation after Cantor, 1915, p.90).1

At the turn of the 19th and 20th centuries, Cantor’s theory of
infinity reigned. Although its definitions are not built on theorems,
as it sometimes happens in mathematics, people started to consider
cardinal numbers as the indispensable measure of infinite sets.

Kurt Gödel reinforced the belief that there is no alternative to Can-
tor’s theory of infinite numbers. In (Gödel, 1947), he presents cardinal

1 In the current set theory, the law of trichotomy for cardinal numbers is equivalent to
the Axiom of Choice. See (Kuratowski and Mostowski, 1978, ch. 8, § 6.).
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numbers as extending the system of natural numbers (N,+, ·, 0, 1, <)
and seeks to show that „this extension can be effected in a uniquely
determined manner.”

Nevertheless, there is still some dissatisfaction: when we apply
Cantor’s theory to subsets of N there are only two possibilities there—
a set can be either finite or has the cardinality ℵ0.

Ordinal numbers provide another way of measuring infinite sets,
yet they refer to well-ordered sets rather than bare sets. Cantor de-
signed arithmetic for these numbers as well as the greater-lesser
relation. In this case, the law of trichotomy does not relate to the Ax-
iom of Choice (see Kuratowski and Mostowski, 1978, ch. 7). Modern
accounts of set theory introduce cardinal numbers as specific ordinal
numbers (Jech, 2003, ch. 3). Finite numbers, that is, elements ofN, are
both cardinal and ordinal numbers, and in each case, they contribute
the hierarchy greater-lesser.

1.3. Numerosities

In the sections that follow, we present a theory that assigns special
numbers, called numerosities, to subsets of N in such a way that
numerosity of A<numerosity of B, whenever A ⊊ B. In this sense,
numerosities meet Gelileo’s intuition that the relation greater–lesser
between infinities agrees with the subset relation.

The general theory of numerosities is developed in (Benci and Di
Nasso, 2019) as well as a variety of papers also authored by Vieri
Benci and his collaborators. Below, we present its simplified version
that applies only to subsets of N. We define numerosities as nonstan-
dard natural numbers introduced through an ultrapower construction,
where the numerosity of N is a number α represented by the equiv-
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alence class [(1, 2, 3, ...)]. Still, we need a bigger structure to define
numbers such as

√
α or α/2. To this end, we introduce a field of

nonstandard real numbers.
To make this presentation self-contained, we start with the basics

of the theory of ordered fields. Then, we proceed to the extension of
the field of real numbers to the field of nonstandard reals. With these
foundations, we can easily introduce numerosities and demonstrate
theorems.

2. The basics of ordered fields theory

A commutative field (F,+, ·, 0, 1) together with a total order < is an
ordered field when the sums and products are compatible with the
order, that is

x < y ⇒ x+ z < y + z, x < y, 0 < z ⇒ x · z < y · z.

In any ordered field, we define in a usual way an absolute value,
|x|, and a limit of sequence,

lim
n→∞

an = g ⇔ (∀ε > 0)(∃k ∈ N)(∀n ∈ N)(n > k ⇒ |an−g| < ε).

Note, however, that while in real analysis the formula ∀ε > 0

stands for ∀ε ∈ R+, in an ordered field, it means ∀ε ∈ F+. Moreover,
in any field, whether Archimedean or non-Archimedean, indexes k, n
range over standard natural numbers N.

The term n is defined by

n =df 1 + 1 + ...+ 1︸ ︷︷ ︸
n−times

,
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while n
m =df n ·m−1. On this, basis we assume that any ordered field

includes natural numbers, N, and rational numbers, Q. In fact, the
field of fractions (Q,+, ·, 0, 1, <) is the smallest ordered field.

In every ordered field, we can define the following subsets of F:

L = {x ∈ F : (∃n ∈ N)(|x| < n)},

A = {x ∈ F : (∃n ∈ N)( 1n < |x| < n)},

Ψ = {x ∈ F : (∀n ∈ N)(|x| > n)},

Ω = {x ∈ F : (∀n ∈ N)(|x| < 1
n )}.

The elements of these sets are called limited, assignable, infinite,
and infinitely small numbers respectively. Here are some obvious
relationships between these kinds of elements, we will call them ΩΨ

rules,

(∀x, y ∈ Ω)(x+ y ∈ Ω, x · y ∈ Ω),
(∀x ∈ Ω)(∀y ∈ L)(x · y ∈ Ω),
(∀x)(x ∈ A⇒ x−1 ∈ A),
(∀x ̸= 0)(x ∈ Ω ⇔ x−1 ∈ Ψ).

2.1. Archimedean axiom

When to the axioms of an ordered field we add the so-called
Archimedean axiom, we obtain the class of Archimedean fields. Here
are some equivalent forms of the Archimedean axiom:

(A1) (∀x, y ∈ F)(∃n ∈ N)(0 < x < y ⇒ n · x > y),
(A2) (∀x ∈ F)(∃n ∈ N)(n > x),
(A3) lim

n→∞
1
n = 0,

(A4) (∀x, y ∈ F)(∃q ∈ Q)(x < y ⇒ x < q < y),
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(A5) For any Dedekind cut (A,B) of (F, <) obtains2

(∀n ∈ N)(∃a ∈ A)(∃b ∈ B)(b− a < 1
n ),

(A6) Ω = {0}.

Versions A1 and A2 are well-known, both in the mathemat-
ical as well as the historical context. A1 in the following form
(∀x, y ∈ F)(∃n ∈ N)(nx > y) originates from Euclid’s Elements,
Book V, definition 4. It characterized the ancient Greek structure of
magnitudes, specifically, line segments. In modern times, it is an ax-
iom of Euclidean geometry. Calculus courses usually present A3 as a
theorem. However, it follows from some versions of the continuity of
real numbers, for example, C1 or C2 as presented below, or is explic-
itly included in other versions. A6 reveals that in a non-Archimedean
field, the set of infinitesimals contains at least one positive element,
say ε. Then, by ΩΨ rules, ε

n , as well as, n · ε are also infinitesimals.
A3 provides a neat characterization of the non-Archimedean field:

( 1n ) is not a null-sequence. In the field of formal power series (Laurent
series), given 0 < x < 1, (xn) is a null-sequence, that is lim

n→∞
xn = 0.

Moreover, it is a non-Archimedean and Cauchy-complete field (see
Cohen and Ehrlich, 1963, p.70; or Błaszczyk, 2007, pp.269–272).
The field of hyperreals, as defined in the next section, is also non-
Archimedean and Cauchy-complete. Yet, due to the so-called satura-
tion principle, there are no null sequences, except constant ones (or
constant but a finite set).

2 For the remainder, a pair (A,B) of non-empty sets is a Dedekind cut of a totally
ordered set (X,<) iff: (1) A ∪B = X , (2) (∀x ∈ A)(∀y ∈ B)(x < y).
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2.2. Real numbers

The field of real numbers is defined as a commutative ordered
field (F,+, · , 0, 1, <) in which every Dedekind cut (L,U) of (F, <)
satisfies the following condition:

(C1) (∃x ∈ F)(∀y ∈ L)(∀z ∈ U)(y ≤ x ≤ z).

Here are some equivalent forms of C1:

(C2) If A ⊂ F is a nonempty set which is bounded above, then there
exists a ∈ F such that a = supA.

(C3) The field is Archimedean and every Cauchy (fundamental)
sequence (an) ⊂ F has a limit in F.

(C4) The field is Archimedean and if
{
An| n ∈ N

}
⊂ F is a family

of descending, closed line segments, then
⋂
n∈N

An ̸= ∅.

The above definition applies the theorem that every two or-
dered fields satisfying C1 are isomorphic. In this sense, the field
of real numbers is the unique, complete ordered field. Moreover, any
Archimedean field is isomorphic to a subfield of real numbers. As a
result, any field extension of real numbers is non-Archimedean and
includes infinitely small and infinite numbers.

3. The field of hyperreals

In this section, we provide a specific field-extension of real num-
bers, namely a field of hyperreals (non-standard real numbers). Since
(Robinson, 1966), many different approaches to non-standard reals
have been developed. The one presented below is based on the so-
called ultrapower construction. The set of hyperreals R∗ is defined as
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the quotient class of the set of sequences of real numbers, RN, with
respect to a specific relation defined on the set of indexes N. We begin
with this relation.

3.1. Ultrafilter on the setN

We start with the definition of an ultrafilter on N and present some
basic results concerning ultrafilters.

Definition 1 A family of sets U ⊂ P(N) is an ultrafilter on N if
(1) ∅ /∈ U , (2) if A,B ∈ U , then A ∩B ∈ U , (3) if A ∈ U and A ⊂ B,
then B ∈ U , (4) for each A ⊂ N, either A or its complement N \ A
belongs to U .

Take the family of sets with finite complements,

{A ⊂ N : N \A is finite}.

It is usually called the Fréchet filter on N. Indeed, it obviously
satisfies conditions (1)–(3) listed in Definition 1. Note, however, that
neither the set of odd numbers nor the set of even numbers has a finite
complement, hence, the Fréchet filter is not an ultrafilter. Still, by
applying the Axiom of Choice it can be extended to an ultrafilter. In
what follows, let U be a fix ultrafilter on N which extends the Fréchet
filter.3

Thus, we know that for every k ∈ N, the family U includes the set

N \ {0, 1, 2, ..., k},

since sets of this kind belong to the Fréchet filter. Moreover, the set
N also belongs to U , since it belongs to the Fréchet filter. Next, due

3 Since we apply the fixed ultrafilter, we can refer to the field, rather than a field of
hyperreals. Assuming the continuum hypotheses, R∗ is unique up to isomorphism,
that is, it does not depend on a choice of an ultrafilter extending the Frechet filter.
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to the condition (4) of Definition 1, for any subset A of N, either A,
or N \A belongs U . We apply this fact to prove, e.g. an equivalence
(1), as explained below. Finally, it can be shown that the following
proposition holds.

Theorem 1 For any subsetsA1, ..., An ofN such thatAi∩Aj = ∅,
i ̸= j. If

⋃n
i=1Ai ∈ U , then Ai ∈ U for exactly one i such that

1 ≤ i ≤ n.
By applying this proposition, one can show that relations <∗

defined on the set R∗ and N∗ are actually total orders.

3.2. Extending the field of real numbers

In this section, we sketch how to extend the field of real numbers
(R,+, ·, 0, 1, <) to a non-Archimedean field of the hyperreals.4 The
set R∗ is defined as the quotient class of RN with respect to the
following relation

(rn)≡(sn) ⇔ {n ∈ N : rn = sn} ∈ U .

Thus, R∗ = RN/U . Clearly, the equality of hyperreals is defined
by

(1) [(rn)] = [(sn)] ⇔ {n ∈ N : rn = sn} ∈ U .

It means that when sequences (rn), (sn) agree on a set of indexes
that belongs to U , they determine the same hyperreal number. For
example, suppose that the set of even numbers belongs to the ultrafilter,
{2n : n ∈ N} ∈ U . If r2n = s2n, for every n, then [(rn)] = [(sn]).
Therefore, specifically, the following equality holds

[(rn)] = [(0, 2, 0, 4, 0, 6, ...)] = [(1, 2, 3, 4, 5, 6, ...)] = [(sn)],

4 For details, consult (Błaszczyk and Major, 2014; Błaszczyk, 2016).
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where the sequence (sn) is defined by sn = n, and the sequence rn is
defined by rn = n, for even n, and rn = 0, for odd n.

New sums and products are defined pointwise, that is

[(rn)] +
∗ [(sn)] = [(rn + sn)], [(rn)] ·∗ [(sn)] = [(rn · sn)].

New total order is defined by

[(rn)] <
∗ [(sn)] ⇔ {n ∈ N : rn < sn} ∈ U .

Hence, the product and sum of hyperreals [(r1, r2, ...)] and
[(s1, s2, ...)] gives [(r1 · s1, r2 · s2, ...)], and [(r1 + s1, r2 + s2, ...)]

respectively. The relation [(r1, r2, ...)] <
∗ [(s1, s2, ...)] holds when,

for example, the set {n ∈ N : rn < sn} equals N minus some finite
set (though the definition of order <∗ includes also other cases).

Standard real number, r ∈ R, is represented by the class
[(r, r, r, ...)], i.e., the class of a constant sequence (r, r, r, ...). Note
that the sequence representing standard real number, e.g. 1, can take
the same value from some index on, for example

1 = [(1, 1, 1, 1...)] = [(0, 0, 1, 1, ...)].

Owing to the above definitions, we employ the same symbols for
real numbers in the standard and non-standard context; we will also
employ the same symbols for sums, products and order relation in the
standard and non-standard context.

It follows from the notion of ultrafilter that the following relation
holds

(2) [(rn)] ̸= [(sn)] ⇔ {n ∈ N : rn ̸= sn} ∈ U .

Due to this fact, we can control, e.g. an inequality such as this
one [(rn)] ̸= 0. This fact, in turn, enables to show that the quotient
structure is really an ordered field.
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In the next section, we consider hyperreal numbers represented
by sequences of natural numbers, that is [(nj)], where (nj) ⊂ N, for
instance

(3) α = [(1, 2, 3, ...)] = [(n)].

According to the definition of product, we have

α2 = [(1, 2, 3, ...)] · [(1, 2, 3, ...)] = [(12, 22, 32, ...)] = [(n2)].

Then, the hyperreal number α
2 is determined by the following

equalities

α

2
= [(1, 2, 3, ...)] · [( 12 ,

1
2 ,

1
2 , ...)] =

[(
1
2 ,

2
2 ,

3
2 , ...

)]
=

[(
n
2

)]
.

Similarly, that is point-wise, we define the hyperreal number
√
α,

namely
√
α =

[(√
1,
√
2,
√
3, ...

)]
=

[(√
n
)]
.

In a similar way, the floor function is defined, namely⌊
[(rj)]

⌋
= [(⌊rj⌋)].

Hence, hyperreal numbers such as⌊α
2

⌋
and

⌊√
α
⌋
,

are represented by sequences of natural numbers, namely⌊α
2

⌋
=

[(⌊
n
2

⌋)]
,

⌊√
α
⌋
=

[(⌊√
n
⌋)]

.

More specifically,⌊α
2

⌋
=

⌊[(
1
2 ,

2
2 ,

3
2 , ...

)]⌋
=

[(⌊
n
2

⌋)]
= [(0, 1, 1, 2, 2, 3, 3, ...)],
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α
⌋
=

[(⌊√
n
⌋)]

= [(
√
1, 1, 1,

√
4, 2, ..., 2,

√
9, 3, ..., 3,

√
16, 4, ...)].

Note that with natural numbers, the following equalities obtain
⌊n
2 ⌋+⌊n

2 ⌋ = n or ⌊n
2 ⌋+⌊n

2 ⌋+1 = n, depending on whether n is even

or odd. Similarly,
⌊
α
2

⌋
+
⌊
α
2

⌋
= α or

⌊
α
2

⌋
+
⌊
α
2

⌋
+1 = α, depending

on whether the set of even numbers belongs or not to the ultrafilter U .
More specifically, suppose the set of even numbers belongs to U . It
means that for any sequence (rn), only elements with even indexes,
r2k, determine the number [(rn)], as explained above. Now,

⌊α
2

⌋
+
⌊α
2

⌋
= [(0, 2, 2, 4, 4, 6, 6, ...)] = [(1, 2, 3, 4, 5, 6, ...)] = α.

For the sake of completeness, suppose the set of odd numbers
belongs to U . Given this, elements with odd indexes, r1, r3, r5, ...
determine the number [(rn)]. In this case,⌊α
2

⌋
+
⌊α
2

⌋
+[(1, 1, 1, ...)] = [(1, 3, 3, 5, 5, ...)] = [(1, 2, 3, 4, 5, ...)] = α.

We will refer to these results in section § 4.1(3), discussing the
numerosity of the set of even numbers.

3.3. Extending natural numbers

In this subsection, we apply the ultrapower construction, as ex-
plained above, to natural numbers (N,+, ·, 0, 1, <). As a result, we
obtain the nonstandard (and uncountable) model of Peano arithmetic
(N∗,+, ·, 0, 1, <). Thus, the set N∗ is the quotient class of NN with
respect to the following relation

(nj)≡(mj) ⇔ {j ∈ N : nj = mj} ∈ U .
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New sums and products are defined pointwise, new total order is
defined by

[(nj)] <
∗ [(mj)] ⇔ {j ∈ N : nj < mj} ∈ U .

A standard natural number, n ∈ N, is represented by the class
[(n, n, n, ...)]. Like in the case of hyperreals, we employ the same
symbols for natural numbers, as well as for their sums, products and
order, in the standard and non-standard context.

Again, from the fact that the Fréchet filter is the subset of U , it
follows that both the constant sequence (2, 2, 2, ...), and a sequence
(nj) which on a finite set of indexes A takes 0, and for other indexes
takes 2, i.e.,

nj =

 0, for j ∈ A,

2, for j ∈ N \A,

represent number 2,

[(2, 2, 2, ...)] = 2 = [(nj)].

For the rest of our presentation, we call nonstandard natural num-
bers numerosities, and give a special role for the number α, as defined
by formula (3): we will show that α is the numerosity of the set N.

To unify developments of this and the previous sections, we can
define nonstandard natural numbers as a subset of the set of hyperreals
as follows

N∗ = {[(nj)] ∈ R∗ | {j ∈ N |nj ∈ N} ∈ U}.

It is up to the reader to decide which option he/she finds easier to
follow.5

5 When A ⊂ R, then A∗ is defined by A∗ = {[(rj)] ∈ R∗ | {j ∈ N | rj ∈ A} ∈ U}.
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4. Numerosities

In this section, we present a simplified version of the theory of nu-
merosities, as developed in (Benci and Di Nasso, 2019). It considers
subsets of N only. Still, it exemplifies an alternative to Cantor’s theory
of cardinal numbers. Within the Cantor system, every subset of N is
either finite or has the cardinality ℵ0, that is, for every A ⊂ N, either
A ∼ N or A ∼ n, for some n. The theory developed by Vieri Benci
and Mauro Di Nasso gives the same results regarding finite sets. Yet,
infinite subsets of N have smaller numerosity than N.

We present numerosities as hyperreals ascribed to bare sets.
(Benci and Di Nasso, 2019) considers the so-called labeled sets.
(Benci, Bottazzi and Di Nasso, 2014), (Benci, Bottazzi and Di Nasso,
2015) introduce numerosities in the context of measure theory. Section
4.2 compares these attitudes.

4.1. How to measure subsets ofN by numerosities

The key role in Benci and Di Nasso’s theory plays the way how
numerosities are ascribed to subsets ofN. Here is this definition (Benci
and Di Nasso, 2019, p.279)).

Let A be a subset of N. We define a function φA : N 7→ N0, by

(4) φA(n) = {a ∈ A | a ≤ n}.

N0 means N ∪ {0}. When the set {a ∈ A | a ≤ n} is empty, then
φA(n) = 0.

Usually, the symbol X stands for the cardinal number of the
set X. Here it represents a natural number, since for every n, the
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set {a ∈ A | a ≤ n} is finite. Thus, we may interpret the symbol
{a ∈ A | a ≤ n} as follows: how many elements of the sets A are less
or equal to n.

Definition 2 (Benci and Di Nasso, 2019, p.280) The numerosity
of the set A is the nonstandard natural number να(A) represented by
the sequence (φA(n)), that is

να(A) = [(φA(n))],

= [(φA(1), φA(2), φA(3), ...)].

In this context, the index α has no mathematical meaning. By
να(A) we refer to a notational convention applied by Benci and Di
Nasso.

Here are some examples. 1) Let us start with finite sets, e.g. a
two–elements set A = {k, l}, with k < l. We have,

φA(n) =


0, for n < k,

1, for k ≤ n < l,

2, for l ≤ n.

Since for all but finite number of n we have φA(n) = 2, the
numerosity of A equals 2, that is να(A) = 2.

In a similar way, we obtain that numerosity of the set A =

{a1, ..., ak} equals k.
2) Now, we assign a numerosisty to the set of natural numbers N.

To this end, observe that φN(n) = n, for every n. Hence, the sequence
(φN(n)) is (1, 2, 3, ...), and

να(N) = [(1, 2, 3, ...)] = α.

This fact explains the role of the index α: it is the numerosity of
the set N and other numerosities rely on this basic fact.



92 Piotr Błaszczyk

3) Now, let us determine the numerosity of the set of even numbers
E = {2n : n ∈ N}. One can easily figure our the first terms of the
sequence (φE(n)). These are as follows

φE(1) = 0, φE(2) = 1, φE(3) = 1, φE(4) = 2, φE(5) = 2, ...

Thus, (φE(n)) = (0, 1, 1, 2, 2, 3, ...), and, finally

να(E) = [(0, 1, 1, 2, 2, 3, ...)] =
⌊α
2

⌋
.

The numerosity of the set of odd numbers,O = {2n−1 : n ∈ N},
is as follows

να(O) = [(1, 1, 2, 2, 3, 3, ...)].

If the set of even numbers belongs to U , then

να(O) = [(1, 1, 2, 2, 3, 3, ...)] = [(0, 1, 1, 2, 2, 3...)] =
⌊α
2

⌋
.

If the set of odd numbers belongs to U , then

να(O) = [(1, 1, 2, 2, 3, 3, ...)] = [(1, 2, 2, 3, 3, ...)] =
⌊α
2

⌋
+ 1.

Regardless of whether the set of even or odd numbers belongs to
U , the equality holds

να(E) + να(O = [(0, 1, 1, 2, 2, 3, ...)] + [(1, 1, 2, 2, 3, 3, ...)] = α.

4) By induction, we can prove the general rule

A ⊆ B ⇒ να(A) ≤ να(B).

Yet, below we demonstrate a more strict result, namely

(5) A ⊊ B ⇒ να(A) < να(B).
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Set n0 = min(B\A). Then φB(n0) = φA(n0)+1, and φA(n) =

φB(n), for every n < n0. Moreover, φB(n)− φA(n) ≥ 1, for every
n ≥ n0. As a result

{n ∈ N | φA(n) < φB(n)} = N \ {1, 2, . . . , n0 − 1}.

Since N \ {1, 2, ..., n0 − 1} ∈ U , we get να(A) < να(B).
According to Benci and Di Nasso, formula (5) justifies the old

law The whole is greater than the part, even when applied to infinite
sets. In our account, rule (5) applies to subsets of N.

Let us exemplify formula (5). Let B = N \ {1, 2, 3}, that is
B = {n ∈ N : n ≥ 4}. Then να(B) = [(0, 0, 0, 1, 2, 3, . . .)]. Clearly,

να(B) = [(0, 0, 0, 1, 2, 3, . . .)] < [(1, 2, 3, 4, 5, 6, . . .)] = να(N).

Moreover,

[(0, 0, 0, 1, 2, 3, . . .)] + [(3, 3, 3, ...)] = [(3, 3, 3, 4, 5, 6, . . .)] = α.

It means, that
να(B) = α− 3.

Generally, when an arithmetic formula defines the subset of N,
we can determine its numerosity. Below, we exemplify this claim.

5) Let us calculate the numerosity of the set of squares
{n2 : n ∈ N} that plays the key role in the Galileo’s paradox. Now,

A = {1, 4, 9, 16, ..., n2, ...}.

Here are first values of the function φA:

φA(1) = φA(2) = φA(3) = 1,
φA(4) = ... = φA(8) = 2,
φA(9) = ... = φA(15) = 3,
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φA(16) = ... = φA(24) = 4.

We can easily check the that the sequence (φA(n)) represents the
number⌊√

α
⌋
=

[(⌊√
n
⌋)]

= [(1, 1, 1,
√
4, 2, 2, 2, 2,

√
9, 3, ..., 3,

√
16, 4, 4, ...)].

The number
√
α is hyperreal. Depending on whether the set of

squares {n2 : n ≥ 1} belongs to the ultrafilter U , it is or is not a
nonstandard natural number. Therefore, we define the numerosity
of A as

⌊√
α
⌋

rather than simply
√
α. Since α,

√
α, and

⌊√
α
⌋

are
infinite elements of the field of hyperreals (specifically they are greater
than 1), the inequalities ⌊√

α
⌋
≤

√
α < α

follow from the general laws of an ordered field.
6) Finally, let observe that the case of the numerosites of the set

of even numbers and the set of squares represent more general rules,
namely (Benci and Di Nasso, 2019, p.286)

when A = {nk : n ∈ N}, then να(A) =
⌊
α
k

⌋
,

when A = {nk : n ∈ N}, then να(A) =
⌊

k
√
α
⌋
. □

4.2. Labels and non-Archimedean valued finitely additive
measures

In (Benci and Di Nasso, 2019), numerosities measure the so-
called labeled sets. More to the point: a labeled set is a pair (A, ℓ),
where ℓ : A 7→ N0 is such a map that the inverse image ℓ−1(n) is finite
for every n (Benci and Di Nasso, 2019, p.277). In the key definition
(Benci and Di Nasso, 2019, p.279)

φA(n) = |{a ∈ A : ℓ(a) ≤ n}|,
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Benci and Di Nasso refer to an unspecified order on the set N. We
guess it is the so-called natural order. In the theory of ordered fields,
natural order means the only total order compatible with the algebraic
structure of a field (F,+, ·, 0, 1). Indeed, in a real-closed field, there
is a unique such an order. Yet, Benci and Di Nasso do not refer to that
concept. The field of hyperreals is real-closed. That is why one can
explain the uniqueness of the relation ℓ(a) ≤ n from that perspective.

In sum, numerosities introduced within the framework of labeled
sets, are more like Cantor’s ordinal rather than cardinal numbers. They
measure labeled, rather than bare sets. In definition (4) above, a hidden
label is the identity map. When one seeks to measure, for example,
the set of fractions, Q, a label is not uniquely determined. Indeed,
(Benci and Di Nasso, 2019) shows how different ℓ-maps determine
different numerosities of Q (Benci and Di Nasso, 2019, pp.291–292).

(Benci, Bottazzi and Di Nasso, 2014) and (Benci, Bottazzi and Di
Nasso, 2015) introduce numerosities in the context of finitely additive
measures that take values in a hyperreal field R∗. The definition is as
follows:6 A hyperfinite set F ⊂ N∗, such that N ⊂ F , determines an
elementary numerosity ν : P(N) 7→ R∗ by letting

ν(A) = ||A∗ ∩ F ||,

where ||.|| stands for the internal cardinality of a hyperfinite set.
(Benci, Bottazzi and Di Nasso, 2014; 2015) are research papers

taking for granted the basics of nonstandard analysis, such as the arith-
metic of hyperreals, the standard part theorem, algebra of hyperfinite
sets, internal cardinalities, etc. Yet, let decode the above definition
and adjust it to our context.

The hypernite set F is the set {x ∈ N∗ : x ≤ α}, informally
{1, 2, ..., α−1, α}. More formally, it is the so-called internal set deter-

6 To simplify that note, we adopt conventions introduced in section § 3.
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mined by the sequence of sets, F = [{1}, {1, 2}, {1, 2, 3}, ...]. Its in-
ternal cardinality is a hypernatral number determined by the sequence
of natural numbers, ||F || = [({1}, {1, 2}, {1, 2, 3}, ...)]. Generally, a
hyperfinte set H is determined by a sequence of sets A1, A2, A3, ... in
which almost all Ai are finite, {i ∈ N : Ai is fnite} ∈ U . The internal
cardinality ||H|| is determined by the sequence (A1, A2, A3, ...).7

Given that, we can calculate the numerosity of N as follows

ν(N) = ||N∗ ∩ F || = ||F || = α.

Let take A = E = {2, 4, 6, ....}, as discussed in section § 4.1.
Then

E∗ ∩ F = [∅, {2}, {2}, {2, 4}, {2, 4}, {2, 4, 6}, ...].

And accordingly

ν(E) = ||E∗ ∩ F || = [(0, 1, 1, 2, 2, 3, ...)].

Similarly, with other subsets of N discussed in § 4.1. In sum, the
theory of internal and hyperfinite sets allows one to get hyperreal
numbers, which we can calculate explicitly based on definition (4).
We expose the arithmetic required for processing these numbers,
specifically to relate them to α.

4.3. Numerosities and Conway numbers

Di Nasso and Forti (2010) develop numerosities allowing to mea-
sure subsets of R. Benci and Forti (2020) develop yet another ordered

7 For the definition of a hyperfinite set and its internal cardinality, (see Goldblatt,
1998, § 12; 1998, § 11) develops the algebra of internal sets. The definition of A∗ is
analogous to N∗ as given in § 3.3 above.
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field, which includes numerosities. At that stage of the numerosity
project, numbers designed to measure sets appear immersed in the
biggest ordered field—Conway numbers, ONAG (see Benci and Forti,
2020, p.21).8 The field ONAG also includes Cantor’s ordinal num-
bers and hyperreals, therefore provides an obvious milieu to compare
numerosities with the Cantorian way of measuring well-ordered sets.
Taken in that context, ordinal numbers are subject to field operations,
for example, the number ω which measures the set N with the natural
order, can be processed like −ω, ω − 1, ω/2. Since the field ONAG
is real closed, it also includes number

√
ω (see Błaszczyk and Fila,

2020, § 8). Moreover, a unique total order compatible with the field
operations dispels doubts we raised in relation to ℓ(a) ≤ n occurring
in definition (4).

The theory of ordered fields reaches numerosities from seemingly
surprising perspective—Euclid’s axiom The whole is greater than the
part.

5. Philosophical comments

5.1. Euclid’s axiom Thewhole is greater than the part

On many occasions, founders of the numerosity theory refer to
Euclid’s axiom The whole is greater than the part. It may seem simply
a rhetorical turn, yet in some papers, they cite Euclid Elements and
interpret all five axioms from the group Common Notions, which adds
to their notes a flavor of gravity. So, let us take a closer look at it.

8 (Ehrlich, 2012) shows that any ordered field finds its isomorphic copy in the field
ONAG. The universe of this field is a proper class, so the standard techniques of
extending fields do not apply to it.
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Euclid’s Common Notions 5 (CN5 in short), reads (English trans-
lations of the Elements after Fitzpatrick Euclid, 2008):

CN5 “And the whole (ὄλον) [is] greater than the part (μέρους).”

In most modern analysis of CN5, a set interprets the term whole,
and its subset—the part. Then a declare follows that through the
concept of cardinality they can debunk that old, seemingly standing
axiom. Such an interpretation is obviously false: it rests on an ambi-
guity, not to mention its anachronism. On the one hand, it reduces the
whole-part relationship to A ⊂ B on the other, compares A and B,
rather than A and B. Thus whole means both B and B.

Founders of the numerosity theory adopt that set-subset interpre-
tation of the whole-part relationship, however, greater-than interpret
in terms of a finitely additive measure. In our context, it is such a map
µ : P(N) 7→ R∗ that

µ(A ∪B) = µ(A) + µ(B), whenever A ∩B = ∅.

Moreover, 0 ≤ µ(A), µ(∅) = 0, and µ({n}) = 1. Consequently,
the crux of that interpretation consists of following inequalities and
equalities

µ(A) < µ(A)+µ(B \A) = µ(A∪B) = µ(B), whenever A ⊊ B.

In this way, the whole, B, is greater that the part, A, µ(A) <
µ(B).9

The inequality µ(A) < µ(A)+µ(B \A) follows from the axioms
of an ordered field. Let take it in a simpler form a < a + b, given
0 < a, b. And that is how we interpret Euclid’s axiom CN5: the whole,

9 We prove it in section § 4.1, (4).
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a+ b, is greater than the part a. In fact, the sign + is a stylization, the
more accurate formula for term the whole is a, b. Below we sketch
our argument, (Błaszczyk, Mrówka and Petiurenko, 2020) includes
its full version.

We interpret CN5 in a broader context of Euclid’s theory of
magnitudes. Then, it turns out to be equivalent to the axiom called
compatibility of order with sums. To this end, we formalize magni-
tudes of the same kind (line segments being of one kind, triangles
being of another, etc.) as an additive semigroup with a total order,
(M,+, <), characterized by the following five axioms:

E1 (∀x, y)(∃n ∈ N)(nx > y),

E2 (∀x, y)(∃z)(x < y ⇒ x+ z = y),

E3 (∀x, y, z)(x < y ⇒ x+ z < y + z),

E4 (∀x)(∀n ∈ N)(∃y)(x = ny),

E5 (∀x, y, x)(∃v)(x : y :: z : v).
The term nx is defined by nx = x+ ...+ x︸ ︷︷ ︸

n times

.

In ancient Greek mathematics, total order means greater-than
relation. It is primitive, i.e., non-defined, and characterized by law
of trichotomy and transitivity. Greater-than relation between, for ex-
ample, triangles, rather than their measures, seem odd for a modern
reader. However, that is what we find already in proposition I.6, where
Euclid arrives at the conclusion “the triangle DBC will be equal to the
triangle ACB, the lesser to the greater. The very notion (is) absurd;”
see Fig. 1. Here, contradiction consists of violation of the law of
trichotomy: △DBC = △ACB and △DBC < △ACB. The equality
relies on I.4. The inequality seems as obvious that Euclid provides no
arguments.
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In I.39, similarly, given “ABC is equal to triangle EBC”, Euclid
gets the conclusion “ABC is equal to DBC. Thus, DBC is also equal to
EBC, the greater to the lesser. The very thing is impossible.” Here, the
equality △EBC = △DBC follows from the transitivity of equality,
while inequality △EBC < △DBC seems self-evident for Euclid.

In both cases, a modern reader has to decide why a triangle is
greater than another. Indeed, both cases exemplify scheme a+ b > a,
namely

△ACB = △DBC +△DCA > △DBC,

△DBC = △EBC +△ECD > △EBC.
(6)

Given our interpretation, they apply CN5.
More to the point: firstly, we show that E3 is equivalent to

(∀x, y)(x+ y > x) relative to E1 and E2, that is

E1, E2, E3 ⇔ E1, E2, CN5.

Secondly, through textual analysis we show that this new form of
E3 interprets Euclid’s CN5. Thus, in what follows, CN5 stands for
(∀x, y)(x+ y > x).

In (Błaszczyk and Fila, 2020), we show how the structure of
magnitudes evolved into an ordered field. Then, in the 19th-century,
axiom E3 or x+ y > y reappears in the mathematical studies on the
concept of magnitudes (Błaszczyk and Fila, 2020, § 6).

5.2. Mancosu on numerosities

Paolo Mancosu (2009) is the first study introducing numerosities
into a philosophical debate. (Mancosu, 2016) applies numerosities
in discussion on the so-called Hume Principle. In what follows, we
focus on the former study.



Galileo’s paradox and numerosities 101

Figure 1: Elements, I.6 (on the left) and 39 (on the right).

Let start with mathematics. Seeking to present an alternative to
Cantor’s theory of cardinal numbers, Mancosu adopts labeled sets
version, takes ℓ to be the identity map, and applies numerosities to
subsets of N.10

He obtains the extension of natural numbers to hypernatural num-
bers (N∗,+·, 0, 1, <) through the ultrapower construction. However,
to this end, following Benci, he applies a selective ultafilter.11 Despite
involving such strong means, results are a bit below the ones presented
in section § 4.1 above.

Mancosu determines numerosity ofN in the same way as we did in
section § 4.1. So, let us adopt the same notation, numerosity(N) = α.
Results regarding odd and even numbers are similar to those presented
in section § 4.1 above.

Numerosities of sets {kn : n ∈ N} and {n2 : n ∈ N} equal to
α/k,

√
α respectively. Yet, it is up to a reader to check why these

hyperreal numbers belong to N∗. In the historical part of the pa-
per, Mancosu discusses Galileo’s paradox, yet in the mathematical

10 He refers to (Benci and Di Nasso, 2003; Benci, Di Nasso and Forti, 2006; 2007) and
some other papers. For obvious reasons, he could not refer to (Benci and Di Nasso,
2019).
11 The existence of selective ultrafilters follows from the Continuum Hypotheses. There
are models of ZFC with no such filters (see Jech, 2003, p.76)
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part, he does not justify the inequality
√
α < α. Finally, the pa-

per does not show the numerosity version of Euclid’s axiom CN5:
numeosity(A) < numerosity(B), given A ⊊ B, although it refers
to the part-whole axiom in the abstract.

Determining numerosities, Mancosu applies the natural order of
natural numbers.12 Therefore, Cantor’s ordinal rather than cardinal
numbers provide more accurate counterpart for numerosities. When
discussing Gödel (1947), he observes: “Gödel’s reflection aims at
showing that in generalizing the notion of number from the finite
to infinite one inevitably ends up with the Cantorian notion of car-
dinal number” (Mancosu, 2009, p.638). Indeed, that was Gödel’s
observation. In the same paper, he refers to ordinal numbers, yet, do
not find them as extending finite numbers. However, one can extend
the structure of finite numbers, (N,+, ·, 0, 1, <), to cardinal or ordi-
nal numbers. Regarding ordinal numbers, the alternative has been
discovered already at the beginning of the 20th century by Gerhard
Hessenberg (1906) and his definition of normal sums and products.13

And indeed, founders of the numerosity project refer to the struc-
ture of ordinal numbers with normal sums and products in numerous
papers.

5.3. Mancosu on infinite numbers in a historical context

The substantial part of (Mancosu, 2009) consists of a historical
survey on mathematical infinity. It is a must-read study for anyone
interested in the history of mathematics. Here, we mention only two

12 See An = {a : lA(a) ≤ n} (Mancosu, 2009, p.632).
13 In (Błaszczyk and Fila, 2020, § 8), we show embedding of ordinal numbers with
normal sums and products into the field ONAG.
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issues, which Mancosu omits (maybe intentionally). The first is the
tradition of geometrical optics from Euclid to Descartes. In short,
it was a dogma of the 17th-century optics that light propagates with
infinite velocity. Still, it differed depending on the medium of propaga-
tion. Consequently, there was a scale of infinite velocities. Although
Descartes faultily believed that light propagates faster in water or
glass than in air, he could establish the ratio of these two infinities to
derive the law of refraction (see Błaszczyk, 2020).

The second issue concerns Cantor’s arguments against infinitesi-
mals. Mancosu touches that point regarding Cantor-Bolzano debate.
Yet it was Cantor’s proxy dispute with Euler and his idea that infinite
numbers are inverses of infinitesimals. All through his mathematical
career, Cantor sought to prove the inconsistency of infinitesimals.
Euler in his Introductio in Analysin Infinitorum (1748)—the most
important treaty in the history of mathematics—applies both infinites-
imals and infinite numbers. Strangely enough, there are only a few
references to (Euler, 1748), of minor importance, in Cantor’s papers
and letters. That bare fact is more significant than Cantor’s explicit
comments on alternative theories of infinite numbers (see Błaszczyk
and Fila, 2020).
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