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Abstract
It is well-established that topos theory is inherently connected with
intuitionistic logic. In recent times several works appeared concern-
ing so-called complement-toposes (co-toposes), which are allegedly
connected to the dual to intuitionistic logic. In this paper I present
this new notion, some of the motivations for it, and some of its con-
sequences. Then, I argue that, assuming equivalence of certain two
definitions of a topos, the concept of a complement-classifier (and
thus of a co-topos as well) is, at least in general and within the con-
ceptual framework of category theory, not appropriately defined. For
this purpose, I first analyze the standard notion of a subobject classi-
fier, show its connection with the representability of the functor Sub
via the Yoneda lemma, recall some other properties of the internal
structure of a topos and, based on these, I critically comment on the
notion of a complement-classifier (and thus of a co-topos as well).
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1. General introduction

Category theory, and especially topos theory, have changed the
way we think about the role of logic in mathematics, and, through

mathematics, perhaps also in physics. It is common knowledge that
toposes are intrinsically connected to intuitionistic logic. However,
recently there appeared several works concerning so-called comple-
ment-toposes (co-toposes), which are, supposedly, connected to a
certain type of paraconsistent logic called dual to intuitionistic, or anti-
intuitionistic, logic, which algebra is a co-Heyting one.1 It is known
that, indeed, some toposes having co-Heyting structures exhibit some
aspects of dual to intuitionistic logic (see Reyes and Zolfaghari, 1996,
and Section 5 here), and more in this matter may be discovered in the
future, but here I want to examine only some aspects of the notion of
a complement-topos.

In (Mac Lane and Moerdijk, 1994, p.161f and p.163) two def-
initions of a topos are given, which are said to be equivalent. The
whole reasoning of my paper hinges on this equivalence and in what
follows I assume its validity (although I have some reasons to doubt
it, and I plan to examine this in the future). Here I argue that the
way co-toposes are defined in the above-mentioned works is, at least
from the point of view of category theory, inappropriate. I will not
give the complete exposition of the role a dual to intuitionistic logic,
or, from an algebraic point of view, a co-Heyting structure, plays in
category theory. This is rather still a work in progress and I would like
to elaborate on this subject more extensively in future. Here I give

1 About co-toposes see (Mortensen, 1995; 2003; James, 1996; Estrada-González, 2010;
2015), about a dual to intuitionistic logic see e.g. (Goodman, 1981; Czermak, 1977;
Urbas, 1996; Kamide, 2003).
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only some arguments, I think quite convincing, against the considered
notion of a co-topos. It should be stressed that if not stated otherwise
I am considering only zero-order logic, i.e. propositional logic.

First, in Section 2, I give some motivations behind the introduction
of the concept of a co-topos, I provide the definition of this concept,
and, also for this purpose, of the notion of the so-called complement-
classifier. Later, assuming the validity of these concepts, I show some
of their consequences. In Section 3, I analyze the original concept of a
subobject classifier and show how it is connected with the requirement
that the functor Sub is representable. In the next section, I critically
comment on the notion of a co-topos basing on both the above analysis
and some other properties of toposes. In the last section, I conclude
and give some further short remarks on the presence and relevance of
the co-Heyting structure in toposes and other areas of mathematics.

2. Introduction to the alleged co-toposes

As far as I know, the first definition of a co-topos appeared in
(Mortensen, 1995, Chapter 11) (this is suggested in (James, 1996,
p.80)), written together with Peter Lavers. After that publication there
appeared subsequent publications dealing with co-toposes, see e.g.
(James, 1996; Mortensen, 2003; Estrada-González, 2010; 2015).

Let us first see what the motivations for co-toposes are. The
logic of toposes is known to be intuitionistic logic (IL), although
one should be careful with such a simplification because, as Colin
McLarty pointed out, “topos logic coincides with no intuitionist logic
studied before toposes” (see McLarty, 1995, p.vii).2 In one of the

2 In short, higher-order intuitionistic logic of toposes agrees with traditional Heyting’s
rules of inference for connectives and quantifiers, but the disjunction and existence
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approaches, a topos is considered as a generalization of a topological
space. The algebra of open sets (of some topological space) is the
Heyting algebra and therefore it forms a semantics for IL (cf. Stone,
1938; Tarski, 1938) on topological interpretation of IL). However, a
topology can be equivalently specified by the family of closed sets.
Incidentally, it is closure operation and closed sets, rather than interior
operation and open sets, that were first analyzed: McKinsey and
Tarski first considered closure algebra as an algebra of topology (see
(McKinsey and Tarski, 1944; 1946)) and the first general and explicit
definition of a sheaf on a space was described by Leray in terms of the
closed sets of that space (cf. Mac Lane and Moerdijk, 1994, p.1). In
this context we can better understand Mortensen’s motivation when
he writes (see Mortensen, 1995, p.102):

Specifying a topological space by its closed sets is as natural as

specifying it by its open sets. So it would seem odd that topos

theory should be associated with open sets rather than closed

sets. Yet this is what would be the case if open set logic were

the natural propositional logic of toposes. At any rate, there

should be a simple ‘topological’ transformation of the theory

of toposes, which stands to closed sets and their logic, as topos

theory does to open sets and intuitionism. Furthermore, the

logic of closed sets is paraconsistent.

properties, which are a traditional part of intuitionism, do not hold in toposes in general
(see McLarty, 1990, p.154). Although toposes are intrinsically connected with (higher-
order) intuitionistic logic, they were not simply designed to agree with it (see McLarty,
1990, p.152f). Lambek and Scott even claim: “Nothing could have been further from
the minds of the founders of topos theory than the philosophy of intuitionism” (see
Lambek and Scott, 1994, p.125).
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Mortensen gives the following definition of a complement-
classifier (see (Mortensen, 1995, p.104f), I keep the exact same word-
ing, changing only F to false, a toA, and b toX in order to standardize
the notation in this paper):

A complement-classifier for a category E with terminal object
1, is an object Ω together with an arrow false : 1 → Ω satis-
fying the condition that for every monic arrow f : A X

there exists a unique arrow χf such that

A X

1 Ω

f

! χf

false

is a pullback. χf is the complement-character of f .

Then it is stated what a complement-topos is (I quote from
(Mortensen, 1995, p.105)):

An (elementary) complement-topos is a category with initial

and terminal objects, pullbacks, pushouts, exponentiation, and

a complement classifier.

In what follows, I shall use the term complement-topos (or in short
co-topos) meaning the notion as it is described above by Mortensen
(the same notion is also used in e.g. (Estrada-González, 2010; 2015)).
As an example of a different definition of a co-topos see e.g. (Angot-
Pellissier, 2015), where “cotopos” is considered as ‘a closed co-
Cartesian category with quotient classifier” (see p.189), which seems
to be a different notion, although the author suggests he is considering
the same notion and makes reference to unpublished work by James
and Mortensen.

As I mentioned in Section 1, my aim in this paper is not a thor-
ough analysis of connections between dual to intuitionistic logic and
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toposes, nor a comprehensive study of papers concerning co-toposes.
I want to scrutinize only some aspects of the notion of a complement-
topos. I argue that the arrow 1→ Ω, distinguished (up to isomorphism)
by subobject classifier, may not be arbitrarily interpreted, and thus
simply renaming it as false is, at least form the point of view of
category theory, inappropriate.

Let me first show some of the consequences of such a definition
(cf. e.g. Mortensen, 1995; Estrada-González, 2010), assuming for a
moment its validity. Having the complement-classifier false : 1→ Ω

(which will be denoted also as ⊥), we define, by analogy with the
standard approach,

(1) true ≡ ⊤ := χ01 ,

where 01 is the only, and always existing, arrow from the initial object,
0, to the terminal object, 1; this arrow is a monomorphism. The logical
connectives are also defined by analogy with the standard approach3,
but we have to take into account that now χf is the complement-
characteristic arrow. We have therefore:

¬ := χ⊤ ,

⌣ := χ⟨⊥,⊥⟩ ,

⌢ := χIm[⟨⊥,idΩ⟩,⟨idΩ,⊥⟩] ,

− := χe ,

where ⟨f, g⟩ is the product arrow of f and g (with respect to the pro-
jections π1, π2 on its first and second factor, respectively), [f, g] is the
co-product arrow of f and g (with respect to the standard injections),

3 I assume the Reader’s familiarity with the standard definition of logical connectives
in a topos, which can be found in e.g. (Goldblatt, 2006, p.139).
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Imf is an image of f , i.e. the monic of the epi-monic factorization
(which, in a topos, exists for any arrow), and e is the equalizer of ∨
and π1. Therefore, in the process of such a dualization: (i) conjunction
and disjunction interchange, and (ii) in place of implication we get
the so-called pseudo-difference.

As a result
(
E(X,Ω),⊑

)
changes the order, so it becomes a

co-Heyting algebra.
(
Sub(X),⊆

)
remains a Heyting algebra, as it

depends only on the factorization of the appropriate arrows and thus is
independent of the (complement-)classifier. In this way,

(
Sub(X),⊆

)
and

(
E(X,Ω),⊑

)
are no longer isomorphic Heyting algebras. The ar-

row ⊥, the one distinguished (up to isomorphism) by the complement-
classifier, is now the lowest element of

(
E(1,Ω),⊑

)
.

If we define (as is the usual way) E |= α if and only if, for every E-
evaluation V , it is V (α) = ⊤ then we get a different set of tautologies.
Let me analyze one example, for which I use the subscript “S” for the
notation of standard toposes, and no subscript for the present case of
co-toposes. Because the definition of co-topos, in comparison with
the one of topos, assumes the same properties for certain arrows, but
gives only different names (or interpretations) to them, we have that
e.g. the arrow “⊥” (defined as χ01 ) in a standard topos (i.e. ⊥S , in our
current notation), is the same as ⊤ (defined in (1)), and thus we have
⊥S = ⊤. The situation is analogous for the other arrows. Now, for
any (standard) topos E we have:

E |=S ∼ (φ∧ ∼ φ) .

In IL we have: if ∼ψ = 1, then ψ = 0 (but not vice versa). Thus for
all E-evaluations we have trivially (assuming, for convenience, that φ
is an atomic sentence)
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VS(φ∧ ∼ φ) = ⊥S
=⌢S ◦ ⟨VS(φ),¬S ◦ VS(φ)⟩
=⌣ ◦ ⟨V (φ),¬ ◦ V (φ)⟩
= V (φ∨ ∼ φ)
= ⊤ .

This means that for any co-topos we would have E |= φ∨ ∼ φ .

3. The subobject classifier

In order to analyze the question of the appropriateness of the definition
of a complement-classifier and that of a co-topos, let us first comment
on the definition of standard subobject classifier and that of topos. A
subobject classifier may be defined in the following way:

Definition 1. If C is a category with a terminal object 1, then the
subobject classifier for C is an object Ω together with an arrow
true : 1→ Ω such that for every monic f : A X there is a unique
arrow χf : X → Ω which makes the following diagram a pullback:

a d

1 Ω .

f

! χf

true

The important question for us is whether (in the context of a topos)

(A) the word “true” in the above definition is a meaningful and
non-removable part of it,
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and, in such case, we should add a comment about what does “true”
mean already at this level (without having yet defined any order on
E(1,Ω)); or whether

(B) instead of “. . . together with an arrow true : 1→ Ω such that . . . ”
we could just have “. . . together with a certain arrow η : 1→ Ω

such that . . . ” (where η is just a label added for convenience of
referring to it).

Of course, in both cases the distinguished arrow (true or η) is defined
up to an isomorphism, but the question is whether the interpretation
of it as true is an additional feature of the arrow that we are assuming
(option (A)), or it is the consequence of the definition (option (B)). In
the latter case we can post factum add this name in the very definition
and obtain the standard textbook definition.

In my opinion, (B) is the only correct option. A subobject clas-
sifier is considered mainly in order to define a topos as a Cartesian
closed category with a subobject classifier. However, a topos may also
be defined without any reference to truth. Namely, from the equiv-
alence of the two definitions of the topos (Mac Lane and Moerdijk,
1994, p.161f and 163), instead of a subobject classifier we can assume
an object Ω and for each object X an isomorphism

Sub(X) ∼= Hom(X,Ω) ,

natural in X . In other words, the functor Sub is required to be repre-
sentable (the subobject classifier being its representing object).

Representability of Sub

Let us briefly see how representability of the functor Sub is con-
nected with the standard definition of a subobject classifier. Repre-
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sentability of Sub means that there is a natural isomorphism between
the Sub functor and the contravariant Hom-functor Hom(−,Ω) (with
Ω being the representing object), which we shall denote as β. The
situation can be pictured as

(2) Eop Set .

Hom(−,Ω)

Sub

β

Now, from the Yoneda lemma we know that

Nat
(
Hom(−,Ω), Sub

) ∼= Sub(Ω) ,

and every natural transformation α from Hom(−,Ω) to Sub is com-
pletely determined by an element of Sub(Ω) (i.e., by a subobject of
Ω), which is αΩ(idΩ). Namely, for any object X of E , a component
αX is an arrow between sets Hom(X,Ω) and Sub(X), and its action
on any arrow g : X → Ω is given by

αX(g) = Sub(g)
(
αΩ(idΩ)

)
,

where Sub(g) is an arrow in Set between Sub(Ω) and Sub(X),
which takes a monic and by pulling it back along g gives another
monic. αΩ(idΩ) being a subobject of Ω can be denoted as a monic
Ω0 Ω. Then, the action of αX can be described as follows: for any
g : X → Ω, αX(g) gives a subobject ofX , let us denote it asA X ,
which is given by the following pullback:

A X

Ω0 Ω .

g
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It can be shown that if α is a natural isomorphism, then the corre-
sponding subobject αΩ(idΩ) is not any subobject of Ω, but precisely
a global element of it, i.e., an arrow 1 → Ω (see e.g. Mac Lane
and Moerdijk, 1994, part of the proof on p.33f).

From the representability of Sub we know that among all the
natural transformations {α} there is at least one that is actually a
natural isomorphism, which we have denoted as β (see (2)). We now
know that such β is completely determined by βΩ(idΩ), being a global
element of Ω, which we shall denote as η : 1 → Ω. In this way, for
any object X we have an isomorphism (a bijection) βX between
Hom(X,Ω) and Sub(X) given by a pullback (to avoid confusion
with previous notation, we may now denote the arrow from Sub(X)

as f , and the corresponding arrow from Hom(X,Ω) as χf )

A X

1 Ω ,

f

! χf

η

which is precisely the bijection between characteristic morphisms and
subobjects, as assumed in the definition of subobject classifier.

The above considerations suggest that the interpretation of the
arrow η : 1→ Ω as true is not an additional feature the arrow has to
fulfill, but it follows, as we shall see more clearly in the next section,
from the role this arrow plays in the structure of a topos, as option (B)
(on page 119) points out.

4. Comments on the notion of a co-topos

As mentioned in Section 1, I assume in this paper that the two defi-
nitions of a topos as given in (Mac Lane and Moerdijk, 1994, p.161f



122 Mariusz Stopa

and 163) are equivalent (as stated in this book). In my opinion, this
equivalence should be scrutinized, and I plan to examine this in future
work, but here I take it for granted. The whole argumentation of my
paper hinges on this equivalence, and so, if it is false, the conclusions
might also (but do not have to) be false. Nevertheless, I think that a
lot of observations in this paper are still valuable (at least as valid
conditional reasoning based on some assumptions).

First, a topos may be defined without any reference to the notion
of truth, thus making impossible the dualization suggested in the
approach under consideration.

Moreover, we have to pay attention to the internal structure of a
topos. From the categorical point of view, it is the internal structure
that plays a major role, and if the category theory is treated as a foun-
dation of mathematics, then the internal structure is the only one we
have. Boolean algebras, which are the Tarski–Lindenbaum algebras
of the classical logic, are self-dual in the sense that they preserve the
property of being Boolean after changing the order. Such a change
of the order swaps the top element (truth) with the bottom (false),
and the conjunction (meet) with the disjunction (join) (nota bene, this
property of Boolean algebras does not imply that the notions of truth
and falsity are utterly interchangeable for, say, the working mathe-
matician). For Heyting algebras, which are the Tarski–Lindenbaum
algebras of the intuitionistic logic (or, more precisely, for intermediate
logics), the situation is not the same. The dual of a Heyting algebra is a
co-Heyting or Brouwer algebra associated with a dual to intuitionistic
logic. Now, it is a Heyting algebra structure that is fundamentally4 and

4 By this I mean the universality of this structure in all toposes. A co-Heyting structure
can also be present internally in toposes but only in some of them (e.g. in Boolean
toposes, but, as we shall soon see, there is a much larger family of toposes that also
exhibit a co-Heyting structure).
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internally present in all toposes. We have already mentioned that the
poset

(
Sub(X),⊆

)
is a Heyting algebra for any objectX in any topos

(independently of the (complement-)classifier). This is an example
of the external Heyting algebra, as the set Sub(X) may not be an
object of a given topos. There is, however, an internal version of this
statement, which I formulate in the form of a proposition without
proof, based on (Mac Lane and Moerdijk, 1994, p.201):

Proposition 1. For any objectX in any topos E , the power object PX
(or equivalently the exponential ΩX) is an internal Heyting algebra.
(In particular, so is the subobject classifier Ω = P 1.) For each X in
E the internal structure on Ω makes Hom(X,Ω) an external Heyting
algebra so that the canonical isomorphism

(3) Sub(X) ∼= Hom(X,Ω)

is an isomorphism of external Heyting algebras.

In the proof of the theorem on which this proposition is based, it
is shown that η : 1→ Ω is the top element of the object Ω taken as an
internal Heyting algebra.5 On the ‘external level’, assuming (3), we
may easily see that η is also the top element in the external Heyting
algebra Hom(1,Ω). In order to achieve this let us note that η : 1→ Ω,
having the codomain Ω, is the characteristic arrow for some subobject
of its domain, i.e. of 1. If we pull η back along itself, we get that
η = χid1 . Now, because id1 is the top element of the Heyting algebra
Sub(1), by means of (3) we get our result that η is the top element in

5 The proof may be found on pages 201f of (Mac Lane and Moerdijk, 1994). The
authors denote the η arrow as true from the very beginning, but, as I have argued
in the previous section and as the proof under consideration shows, this notation (or
interpretation) is the consequence of its definition in the context of a topos.
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the external Heyting algebra Hom(1,Ω), which is understood as the
algebra of truth-values of a topos and plays a special role in its logical
structure.

On the basis of the above considerations, I argue that the distin-
guished arrow η : 1→ Ω cannot be interpreted arbitrarily. Therefore,
the opinion that: “To dualize, simply rename T with F, and relabel the
classifier arrow chif as chi-barf” (see Mortensen, 2003, p.259) cannot
be considered valid. On the contrary, no matter how we denote the
distinguished arrow, by T, F, η or by anything else, if it obeys the
required conditions, then it will play the role of the top element of
both, the internal Heyting algebra Ω, as well as the external Heyting
algebra Hom(1,Ω), and thus the role of truth. At the same time, let
me remind that the subobject classifier, together with its true arrow, is
defined (only) up to isomorphism, which is a common (and proper)
feature in category theory.

5. Summary and further remarks

In this paper, I have given some reasons why, assuming the equiva-
lence of the two definitions of a topos in (Mac Lane and Moerdijk,
1994, p.161f and 163), I think the way co-toposes are defined in
the above-considered works (Mortensen, 1995; 2003; James, 1996;
Estrada-González, 2010; 2015) is not appropriate, at least within the
conceptual framework of category theory.

This does not mean that there is no place for co-Heyting structures
and possibly some manifestations of dual to intuitionistic logic in
toposes. On the contrary, apart from the whole class of Boolean
toposes (which are in this respect a trivial instance of the presence
of a co-Heyting structure), a vast class of toposes is known that
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exhibit the co-Heyting structure of subobjects (and thus bi-Heyting,
because, as I have mentioned, the Heyting structure is always present).
Lawvere (1991) very concisely pointed out that “In any presheaf topos
(and more generally any essential subtopos of a presheaf topos), the
lattice of all subobjects of any given object is [. . . an] example of a
co-Heyting algebra” (Lawvere, 1991, p.280). This line of reasoning
was pursued by Reyes and Zolfaghari in (Reyes and Zolfaghari, 1996)
where they proved the above Lawvere’s assertion and introduced a
new approach to the modal operators, based on the existence of the
two negations for bi-Heyting structures. The bi-Heyting algebras and
their logics were first studied, according to my knowledge, by Cecylia
Rauszer (1974a,b), where she uses the name semi-Boolean algebra
for bi-Heyting algebra, and Heyting–Brouwer logic, or, in short, H-B
logic, for its logic.

It seems that the co-Heyting structure is also connected with
a notion of ‘boundary’, since now the intersection of an element
of a co-Heyting algebra with its co-Heyting complement (negation)
may not be empty (zero). The ’boundary’ defined in this way may
also exhibit the Leibniz product rule and perhaps be developed into
some further geometric structures (cf. Lawvere, 1991; Majid, 2008,
especially pp.123–126).
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