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Abstract
Starting from logical structures of classical and quantum mechanics
we reconstruct the logic of so-called no-signaling theories, where the
correlations among subsystems of a composite system are restricted
only by a simplest form of causality forbidding an instantaneous
communication. Although such theories are, as it seems, irrelevant for
the description of physical reality, they are helpful in understanding
the relevance of quantum mechanics. The logical structure of each
theory has an epistemological flavor, as it is based on analysis of
possible results of experiments. In this note we emphasize that not
only logical structures of classical, quantum and no-signaling theory
may be treated on the same ground but it is also possible to give to all
of them a common ontological basis by constructing a “phase space”
in all cases. In non-classical cases the phase space is not a set, as
in classical theory, but a more general object obtained by means of
category theory, but conceptually it plays the same role as the phase
space in classical physics.
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Ontological assumptions of classical and quantum picture of the
world differ significantly, despite the fact that both descriptions

attempt to grasp the structure of the same reality. The fact that they
offer a glance from two different points of view—macroscopic and
microscopic, should not interfere with a pragmatic request that, at
least to compare both theories, we should have in both of them some
common ‘elements of reality’, e.g., some observables that pertain to
the same physical quantities on both levels, like ‘position’, ‘momen-
tum’, ‘angular momentum’ etc. An alternative (let’s call it Kuhnian)
approach would be to deny connections between concepts used in
both theories pointing to (seemingly) the same properties of physical
systems, (e.g., Newtonian and Einsteinian mass (Kuhn, 1970)). The
latter approach is not particularly attractive from the point of view of
a practicing physicist. It leaves no room for many useful and fruitful
procedures as e.g., a ‘semiclassical/classical approximation’.

Classical systems are described in terms of a phase space, usu-
ally a differential manifold with some additional (symplectic/Poisson/
metric) structures. Observables, i.e. physical quantities that we can
measure, or, in general to which we can ascribe certain numerical
values characterizing the observed system, are functions on the phase
space. Values of observables, like positions, momenta, energies, angu-
lar momenta etc., are some intrinsic properties of physical systems
(particles, ensembles of particles, rigid bodies, etc.). They can change
in time, but are properties that are possessed by systems alone and
do not depend on whether or not they are actually measured at a par-
ticular moment. At least in principle, we can measure them without
disturbing the system. Consequently, measurements can be performed
in an arbitrary order, or even simultaneously, and provide the same
results. We can thus pose questions about exact values of, say, the
position and the momentum of a particle. Usually, however, due to
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e.g., inaccuracies of measurements we inquire into the probability that
our particle is in a certain subset of the phase space. Such a probability
is determined by the volumes of the relevant subsets. Physical states
can thus be identified with probability distributions on (measurable)
subsets of the phase space. Mean values (results of experiments) can
be calculated using these distributions.

In quantum mechanics we do not have a clear notion of a ‘phase-
space’ in the form of a manifold. A backbone structure is provided
by a Hilbert space H, observables are identified with self-adjoined
operators, and states with non-negative, trace-class operators (density
matrices). We may ascribe to each system some properties that pretend
to be quantum analogues of classical ones, like positions, momenta,
angular momenta, energies, etc. (and some others that seem to be of
a purely quantum mechanical nature, like spin, isospin, strangeness,
hypercharge etc.). However, they are no longer intrinsic in the classical
sense. They are not ‘carried’ by a system during its evolution, rather
they are ‘brought to life’ by an act of measurement.

Hence, it is hard to find a unifying ontological basis for classical
and quantum physics. Fundamental elements of physical reality, as
positions, momenta, angular momenta, etc. have different ontological
status in both theories. For everyday physical practice this does not
pose any clear and present danger. Ultimately, physics is an exper-
imental science. It aims at answering experimental questions about
outcomes of measurements putting emphasis on the epistemology,
at the price of moving apart, or even totally discarding ontological
issues.

An attempt to unify classical and quantum physics on common
epistemological ground goes back to Birkhoff and von Neumann
(1936) in form of the so-called quantum logic. The main idea is to an-
alyze the structure of elementary experimental question/propositions
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about a system. In classical physics, elementary propositions can be
reduced to statements that values of observed quantities (positions,
momenta) belong to a certain subset of the phase space. The logi-
cal structure of the set of such propositions, determined by the rules
concerning their negations, conjunctions and disjunctions, isomorphi-
cally reflects the Boole algebra structure of the set of (measurable)
subsets of the phase space. One of the fundamental features of the
resulting lattice1 is the distributivity law, allowing for the distribution
of conjunctions over disjunctions and vice versa.

In quantum mechanics elementary propositions concern posi-
tions of state vectors (characterizing a state of a system) with respect
to eigenspaces of observables. As in the classical case we can ask
composite questions corresponding to conjunctions and disjunctions.
However, the ensuing logical structure is no longer distributive. The
logic of a system described by a Hilbert space H is represented by
the orthomodular lattice of closed subspaces in H. The involution
sending a subspace to its orthogonal complement represents logical
negation, still as in the classical case, satisfies the law of an excluded
middle: measuring the spin of an electron will yield either ‘up’ or
‘down’. The resulting lattice is, however, non-distributive: x-spin up
does not imply x-spin up and z-spin up or x-spin up and z-spin down.
Having the lattice stand for the logic of the system, one derives its
probability theory, where states assign probabilities to elements of the
lattice, respecting the underlying structure (order and complementa-
tion). These states turn out to coincide with the usual density matrices
by the Gleason theorem (Gleason, 1957).

1 A partially ordered set in which every two elements have a unique supremum—the
set-theoretical sum on the level of subsets and conjunction on the level of proposition,
and infimum—the set-theoretical intersection of subsets and disjunction, respectively.
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Having two examples of different theories pertaining to the same
physical reality, we are tempted to think about other similar construc-
tions. From what we know now, it is hard to construct a successful
theory that e.g., supersedes quantum mechanics (Aaronson, 2004). In-
stead we can identify some common epistemic structures in classical
and quantum mechanics encoded in logics of both theories, i.e. the
logical structures of the sets of their propositions, and try to construct
similar, reasonable theories.

One of such attempts was presented by Popescu nad Rohrlich
(1994) in the form of so called no-signaling boxes. They started from
a paradigmatic correlation experiment, that can be performed both
on classical and quantum level depicted schematically in Fig.1. The
model is supposed to describe the most elementary system composed
of two separated subsystems. We can think of inputs as observables
that we choose to measure, and outputs as the results of measurements.
In the simplest case we have two observables, encoded (labeled) by 0

and 1, each of which can take two values 0 and 1. Performing multiple
measurements we will obtain a sequence of outcomes allowing us
to determine the relative frequency P (αβ|ab) of getting any pair
of outputs αβ ∈ {−1, 1} × {−1, 1}, given any pair of inputs ab ∈
{0, 1} × {0, 1}.

In order to have a legitimate interpretation of P : {−1, 1} ×
{−1, 1}×{0, 1}×{0, 1} → R in terms of probability, it should fulfill
the following requirements,

1. 0 ≤ P (αβ|ab) ≤ 1 (positivity),
2.

∑
αβ P (αβ|ab) = 1 (normalization),

3.
∑

α P (αβ|ab) =
∑

α P (αβ|cb);
∑

β P (αβ|ab) =∑
β P (αβ|ac) (no-signaling).
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Figure 1: A two-system correlation experiment

The last property, non-signaling, is supposed to encode the principle of
relativistic causality, i.e. what happens in one box does not influence
the other, obeyed by spatially separated subsystems. We will refer
to this particular example of non-signaling boxes as the (2, 2)-box
world.

For a particular instance of (2,2)-box world we may postulate
concrete values of P (αβ|ab) fulfilling 1.-3. Popescu and Rohrlich
(1994) proposed the following,

(1) P (αβ|ab) =



00 01 10 11

−− 1/2 1/2 1/2 0

−+ 0 0 0 1/2

+− 0 0 0 1/2

++ 1/2 1/2 1/2 0

.
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Usually P (αβ|ab) ̸= P (α|a)P (β|b), where P (α|a) and P (β|b)
are one-particle probability distributions of measurements results of a
and b. One introduces thus the correlations,

(2) ⟨ab⟩ =
∑

α,β∈{−1,1}
αβP (αβ|ab).

It can be now checked that in the classical and quantum cases the
following combination of correlations

(3) S := |⟨a1b1⟩+ ⟨a2b1⟩+ ⟨a2b2⟩ − ⟨a1b2⟩|

that, in principle, can achieve the maximal value of 4 (each of the term
is not larger than 1 in absolute value) is further restricted. Classically
|S| ≤ 2 (Bell (1964) inequality in the CHSH form (Clauser et al.,
1969)) whereas in quantum mechanics |S| ≤ 2

√
2 (Tsirelson’s bound

(Cirel’son, 1980)). For the Popescu-Rohlich box (1) we have S = 4.
In the quantum logic approach the elementary admissible ques-

tions are,

• ‘Does our system belong to a (measurable) subset of the phase-
space?’ (classical mechanics);

• ‘Is the result of measuring the projection on a closed subspace
of the Hilbert space of the system equal to 1?’ (quantum me-
chanics);

• ‘Does measuring a on a subsystem gives an outcome α?’
(Popescu-Rohrlich).2

One can now combine elementary questions by the conjunction and
disjunction and negate them. As already said the resulting lattice is
a Boolean algebra in the classical case and so-called orthomodular

2 In fact we should ask about an outcome of a joint measurement of a in the first
subsystem and b in the second one.
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lattice which is non-distributive3 (Birkhoff and von Neumann, 1936).
For the Popescu-Rohrlich box (1) the appropriate one is that of a
so-called orthomodular poset (for details see (Tylec and Kuś, 2015;
Tylec and Kuś, 2018)). The resulting structure has some common
features with quantum mechanics, e.g., the truth of the alternative
p ∨ q of statements p and q does not imply that p is true or q is true
(the ‘Schrödinger cat’ paradox). Moreover, as in quantum mechanics
measurements are, in general, destructive. Performing a measurement
changes irreversibly a state of a system and does not allow its ex-
act reconstruction (Tylec and Kuś, 2015). On the other hand, from
some points of view, Popescu-Rohrlich boxes are ‘more classical’
than ‘quantum mechanical’, since in both theories the Heisenberg
uncertainty relations are not fulfilled (Tylec and Kuś, 2015).

As already emphasized, the quantum logic approach has a rather
epistemic flavor. We concentrate on learning system’s properties from
observations/measurements. Instead, the category theory seems to
provide a path to ‘restore a common ontology’ for all considered
theories. One can cast the program into a sequence of goals.

• Find a well behaved phase space for quantum and a no-
signaling systems.

• Find a logical structure of the set of propositions.
• Reproduce the probabilistic properties of the theory.

Since the well understood ontological assumptions of classical the-
ory are, as argued above, connected to the notion of the phase-space, it
would be desirable to construct phase-spaces for non-classical theories
in such a way that they resemble ‘as much as possible’ the classical
one. This opens a possibility to interpret quantum mechanics and no-
signaling theories in a realistic sense, like we do it in classical physics,

3 Conjunctions do not distribute over alternatives and vice versa.
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where we can assign truth values to propositions without reference
to measurements. Hence, we can maintain that propositions refer to
some ‘real objects’ or ‘real properties’ independent of observers and
measurements. This is exactly what I call a ‘restoration of a common
ontology’ for all theories considered here.

As it will be clear, we have to be ready to pay some price. The
resulting ‘logic’ of a phase-space need not to be a Boolean one, so
the tertium non datur principle need not to be fulfilled. Nevertheless
the probabilities calculated on such a ‘logic’ (just as the probabilities
in classical physics calculated on the Boolean logic of subsets of the
phase space) will reproduce quantum mechanical and no-signaling
results. Moreover, what separates logics of non-classical theories from
the classical one, i.e. its non-distributivity, responsible for nearly all
‘paradoxes’ of quantum mechanics (and no-signaling theories) will be
avoided.

For quantum mechanics, this can be done within a program pre-
sented by Isham and Döring (2008a,b,c,d), in terms of the category
theory or, more specifically, the topos theory. In what follows I will
employ a slightly different approach (Wolters, 2013), using the same
mathematical apparatus of categories and topoi, proposed originally
by Heunen, Landsman, and Spitters (2009; 2011) called ‘Bohrifi-
cation’4. In (Gutt and Kuś, 2016) we extended the construction to
no-signaling boxes. Finding an analog of a classical phase-space is,
in a certain sense, the principal goal.

Let me shortly describe main mathematical ingredients of the
above outlined approach. A category is a structure consisting of ‘ob-
jects’ connected by ‘arrows’. From the definition we may compose the
arrows (an arrow from an object to a second one followed by another
arrow from the second object to a third one) and the composition is

4 For the explanation of the chosen name consult the cited papers of Heunen et al.
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associative. A very intuitive example of a category is the category
of sets, Set, where the objects are sets, and the arrow connecting a
set A to a set B is a function from A to B.5 A topos is a category
with some additional properties chosen in a way that results in a cer-
tain generalization of Set. The appropriate formal definition and all
needed technical details can be found in one of numerous books on
categories and topoi (e.g., Goldblatt, 2014) and will not be invoked
here.6 What is important is that basic constructions involving sets,
like e.g., exponentiation AB , i.e, the set of all functions from A to B,
have their equivalents for topoi, and that (by definition) each topos
is equipped with the, so-called, sub-object classifier. The latter is a
special object of the considered category, the meaning of which can
be understood by taking again as an example a set S and its subsets.
We can express the fact that A is a subset of S by considering a
characteristic function of A, i.e., the function from S to the set {0, 1}
which takes the value 1 on s ∈ S if a ∈ A and the value 0 other-
wise. The two-element set {0, 1} is the ‘subobject classifier’ making
Set a topos. The fact that the subobject classifier is a two-element
set (we can refer to value 1 as ‘true’ and to 0 as ‘false’) is clearly
strictly connected to the Boolean structure of the algebra of subsets
(and to the ‘logic’ of a classical phase-space described previously). In
general topos the subobject-classifier need not be a two-element set,
but some more general object in the category. As a consequence the
‘logic’ of a topos need not be Boolean any longer, but it is a so-called
Heyting algebra, which is distributive, but, in general, the principle

5 From the point of view of the category theory Set is not so trivial, since the collection
of its objects is not a set—such a category is called a ‘large category’. As an example
of a ‘small category’ employing sets as objects we can take a category of open subsests
of some topological space (‘a classical phase-space’ in the sense described previously).
6 For a clear exposition of applications in quantum physics (Flori, 2013) and (Flori,
2018) are, probably, the best choice.
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of excluded middle is no longer valid. A nice example is a lattice
of open subsets of a topological space. It is partially ordered by the
set-theoretic inclusion and, as in the case of subsets of some set, we
have here the ordinary set-theoretical algebraic operations of sum and
intersection corresponding to alternative and conjunction, but since
the set-theoretical completion of an open set is not open. we have to
take the interior of the completion to achieve the proper representation
of negation. But then the principle of excluded middle is not fulfilled,
since the sum of an open set and the interior of its completion is not
the whole space, in contrast to the case of subsets of a set S, where a
subset A and its completion S − A sum up to the whole S (tertium
non datur). Obviously the lattice remains distributive, since sums
distribute over intersections and vice-versa.

Roughly speaking (some technical refinements are needed to end
up with a proper result, see the cited papers of Heunen et al.), one
finds a well-behaved phase space by constructing an ‘internal logic’
(a Heyting algebra) of some topos and identifying this very topos
with the looked-for phase-space. In the construction of Heunen et
al., concerning quantum mechanics, the starting point is the set C

of commuting subalgebras (‘contexts’) of observables on the Hilbert
space H instead of the set of all orthogonal projections acting on it.
Each such context has a well defined physical meaning as a set of
compatible measurements. The set of contexts partially ordered by
inclusion is treated as a category with contexts as objects and arrows
as inclusions. The construction of the ’internal logic’ goes through
several technical steps (again, for details consult (Heunen, Landsman
and Spitters, 2009; Heunen, Landsman, Spitters and Wolters, 2011))
ending with a topos which is identified with the ’phase-space’ we
were looking for. In a natural way one defines also states of a systems,
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and what is most important, a method of calculating probabilities
of outcomes of experiments (reproducieng the quantum mechanical
results).

In (Gutt and Kuś, 2016) the above construction was extended
to no-signaling boxes. Here we do not have a natural Hilbert space
structure as a playground, consequently thus a natural analogue of
commuting algebras is lacking. Nevertheless, one can consistently
define contexts (situations where measurements are compatible). As a
result it was possible to define an appropriate phase-space Σ, states
of the box-world and probabilities on Σ reproducing the correlation
structure in it. Hence, in terms of category theory one can ‘restore
the ontology’ (phase-space) also for the Popescu-Rorlich boxes. The
resulting phase space is, again, not a set, but a more general object,
namely a particular topos. Thus all three theories are put on the
same level with phase spaces described by appropriate topoi. This
suggests a hypothesis that the approach is, in some sense, universal
and applicable also to other, possible ‘generalizations of quantum
mechanics’ of the whole procedure.

For quantum mechanical systems other approaches of general-
izing the classical phase-space descriptions were considered in the
past (and are still in use). The most popular employs the classical
phase-space parameterized by positions and momenta at the price
of lack of possibility to define in a consistent way positive-definite
probability functions reproducing quantum mechanical results (using
instead so called ‘quasiprobabilities’ like, e.g., the Wigner function).
It is not clear how one relates this approach to the topos-theoretic one
described above. For no-signaling theories it is even harder, since no
starting point (a classical phase-space on which some quasiprobabili-
ties are defined) is easy to identify.
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