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Abstract
We start from the assumption that the real valued observables of
a quantum system form a Jordan algebra which is equipped with a
compatible Lie product characterizing infinitesimal symmetries, and
ask whether two such systems can be considered as independent sub-
systems of a larger system. We show that this is possible if and only
if the associator of the Jordan product is a fixed multiple of the associ-
ator of the Lie product. In this case it is known that the two products
can be combined to an associative product in the Jordan algebra or
its complexification, depending on the sign of the multiple.
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1. Introduction

In quantum theory, the (real valued) observables are self-adjoint el-
ements of a complex associative involutive algebra. This structure

is quite different from the classical case where the observables form
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a Poisson algebra, i.e. an algebra over the reals with a commutative
and associative product and a Lie product inducing derivations for
the commutative product.

As emphasized by Niklas Landsman in his book (1998), the
structure in the quantum case can be formulated in an analogous way
by equipping the selfadjoint part of the algebra with the Jordan prod-
uct (i.e. 1

2 times the anticommutator) and a Lie product defined as
i
ℏ times the commutator. Both products have a physical motivation
quite similar to the classical case. In particular the induced deriva-
tions of the Jordan product by the Lie product are motivated by their
interpretation as infinitesimal symmetries, and the Jacobi identity for
the Lie product may be understood as a consistency condition on
symmetries. Both products are non-associative, and the associator of
the Jordan product is ℏ2/4 times the associator of the Lie product.

The question we want to analyze in this paper is whether the
latter relation between the associators can be physically motivated.
Mathematically it implies that both products can be combined to an
associative product in a complexification of the algebra. This algebra
has an antilinear involution, and its self-adjoint part is the original
Jordan algebra with the Lie product given in terms of the commutator.

To answer this question we add the requirement that indepen-
dent physical systems can be considered as parts of a larger system,
such that the properties of the subsystems are not influenced by the
embedding into the larger system. We show that the validity of the
Jacobi identity in the composed system implies that the associators
of the Jordan products are proportional to the associators of the Lie
product, with a proportionality constant which is independent of the
system. If the constant is positive, one obtains an associative product
in the complexified algebras, and the composed system arises as the
self-adjoint part of the tensor product of the associative algebras.
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The idea to derive the associative product of quantum physics
from the composibility of systems was first discussed in the pa-
per of Grgin and Petersen (1976) and reconsidered more recently
by Kapustin (2013) and Moldoveanu (2015). A related but indepen-
dent result applying to the infinite dimensional case can be found in
(Hanche-Olsen, 1985), see also the book (Hanche-Olsen and Størmer,
1984). Contrary to these works we do not make any a priori assump-
tions on the way the larger system can be built from the subsystems.

2. Jordan-Lie algebras

A Jordan algebra is a real vector space A equipped with a commuta-
tive product ◦, i.e. a bilinear map

A×A→ A, (a, b) 7→ a ◦ b

with a ◦ b = b ◦ a. This product is not necessarily associative, instead
only the weaker relation

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) (1)

holds, where a2 = a ◦ a. Jordan introduced this concept in order to
describe the structure one can expect for quantum observables. In-
deed, the linear structure may be motivated by Ehrenfest’s Theorem
stating that expectation values add as in classical physics (see e.g. Ar-
odź, 2019); labeling of measurement results in terms of real numbers
may be redefined by applying a mapping R → R, so in particular
squares of observables can be defined, and a commutative product
can be introduced by

a ◦ b .= 1

2
((a+ b)2 − a2 − b2) .
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The condition (1) follows from the requirement that powers are well
defined,

an ◦ am = an+m

where a1 = a, an+1 = an ◦ a, under the additional positivity condi-
tion ∑

a2i = 0 ⇒ ai = 0 . (2)

(See Jordan, Neumann and Wigner, 1934; such a Jordan algebra is
called formally real.) Finite dimensional Jordan algebras can be clas-
sified. Besides the standard case of selfadjoint subalgebras of asso-
ciative involutive algebras over R,C or H (the quaternions) one has
a few exceptional cases. We only consider unital Jordan algebras, i.e.
there is an element 1 ∈ A which satisfies the relation

1 ◦ a = a∀a ∈ A . (3)

For finite dimensional Jordan algebras the existence of the unit is
a consequence of the positivity condition (2).

In addition to the Jordan product of observables one has in quan-
tum theory a Lie product in terms of commutators which describes
the dual role of observables as generators of infinitesimal symmetries.
The standard example is Heisenberg’s equation of motion character-
izing the time evolution, and it corresponds directly to the Poisson
bracket of classical physics, as first observed by Dirac. The aris-
ing structure has been analyzed by Landsman (1998). He defines
a Jordan-Lie algebra as a Jordan algebra (A, ◦) with a Lie product,
i.e. a bilinear map

A×A→ A , (a, b) 7→ [a, b],

which is antisymmetric

[a, b] = −[b, a]
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and satisfies the Jacobi identity

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 . (4)

The Lie product is related to the Jordan product by two relations. The
first is the Leibniz rule

[a ◦ b, c] = a ◦ [b, c] + [a, c] ◦ c . (5)

This rule is motivated by the interpretation of the map A ∋ a 7→
[a, c] as an infinitesimal symmetry. The second relation involves the
associators. Denote the associator of the Jordan product by

[a, b, c]
.
= (a ◦ b) ◦ c− a ◦ (b ◦ c)

and the associator of the Lie product by

[[a, b, c]]
.
= [[a, b], c]− [a, [b, c]] ≡ [[a, c], b] .

Then the relation is

[a, b, c] =
ℏ2

4
[[a, b, c]] . (6)

One then can introduce a product · on the complexification A⊗C of
A, by

(a⊗ z) · (b⊗ w) = (a ◦ b)⊗ zw + [a, b]⊗ iℏzw
2

, (7)

which turns out to be associative due to (6). One thus obtains the stan-
dard structure of the algebra of quantum observables. It remains open
whether the relation (6) between the two associators has a physical
interpretation.

We therefore introduce the concept of a q-algebra where the con-
dition (6) is not imposed. We also do not require the Jordan condition
(1) and the positivity relation (2)
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Definition 2.1. A q-algebra is a real vector space equipped with a commu-
tative product ◦ and an antisymmetric product [, ]. It contains a unit for the
commutative product (3) and satisfies the Jacobi identity (4) and the Leibniz
rule (5).

3. Independent subsystems

Let A,B and C be q-algebras. To model the requirement that A and
B represent independent subsystems of the larger system represented
by C we require the following relations:
Definition 3.1. Let α : A → C and β : B → C be monomorphisms of q-
algebras. The pair (α, β) is called an embedding of independent subsystems
if the following conditions are satisfied:

1. the map
A×B ∋ (a, b) → α(a) ◦ β(b) ∈ C

extends to an injective linear map α⊗ β : A⊗B → C.
2. the infinitesimal symmetries implemented by elements of A act triv-

ially on B and vice versa,

[α(a), β(b)] = 0 ∀a ∈ A, b ∈ B, (8)

3. the ◦-product with an observable of one of the subsystems does not
affect the ◦-product in the other subsystem (the observables from A

are compatible with the observables from B in the context of Jordan
algebras (Hanche-Olsen and Størmer, 1984))

(α(a) ◦ (α(a′) ◦ β(b)) = α(a ◦ a′) ◦ β(b) ,

(α(a) ◦ β(b)) ◦ β(b′) = α(a) ◦ β(b ◦ b′) ,
(9)

In the following we omit the symbols α and β by identifying A
andB with their embeddings in C. Moreover, we delete the symbol ◦
for the commutative product and replace it by juxtaposition. We first
determine the antisymmetric product in the image C0 of α⊗ β:
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Lemma 3.0.1. The antisymmetric product in C0 is given by

[ab, a′b′] = [a, a′](bb′) + (aa′)[b, b′] , a, a′ ∈ A, b, b′ ∈ B . (10)

In particular, C0 is closed under the antisymmetric product.

Proof. By (5), (8) and (9) we have

[ab, a′b′] = a[b, a′b′] + [a, a′b′]b = a(a′[b, b′]) + ([a, a′]b′)b

= [a, a′](b′b) + (aa′)[b, b′] .

In the next step we analyze the consequences of the Jacobi iden-
tity within C0. We compute the second antisymmetric product, with
ai ∈ A, bi ∈ B, i = 1, 2, 3,

[[a1b1, a2b2], a3b3] = [[a1, a2]b1b2 + a1a2[b1, b2], a3b3]

= [[a1, a2], a3](b1b2)b3 + (a1a2)a3[[b1, b2], b3]

+ [a1, a2]a3[b1b2, b3] + [a1a2, a3][b1, b2]b3 . (11)

In the last 2 terms we apply the derivation property (5) and obtain 4
terms,

[a1, a2]a3[b1b2, b3] + [a1a2, a3][b1, b2]b3

= [a1, a2]a3b1[b2, b3] + [a1, a2]a3[b1, b2]b3

+a1[a2, a3][b1, b2]b3 + [a1, a3]a2[b1, b2]b3 .

If we perform a cyclic sum over the indices we see that the 1st and
the 4th term cancel, and also the 2nd and 3rd term.

Thus for the Jacobi identity only the first 2 terms in (11) con-
tribute. We use the Jacobi identities in A and B,

[[a1, a2], a3] = −[[a2, a3], a1]− [[a3, a1], a2] ,
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[[b1, b2], b3] = −[[b2, b3], b1]− [[b3, b1], b2] .

The Jacobi identity in C then amounts to the relation

0 = [[a2, a3], a1]((b2b3)b1 − (b1b2)b3)

+[[a3, a1], a2](b3b1)b2 − (b1b2)b3) + (a↔ b))

≡ [[a2, a1, a3]][b3, b2, b1] + [[a3, a2, a1]][b3, b1, b2] + (a↔ b)).

To simplify this expression we choose a3 = a1. Then both associa-
tors [[a3, a2, a1]] and [a3, a2, a1] vanish, and we obtain the relation

[[a2, a1, a1]][b3, b2, b1] + [a2, a1, a1][[b3, b2, b1]] = 0 . (12)

We want to exclude the possibility that [[a2, a1, a1]] = 0∀a1, a2 ∈ A.
If all these quantities would vanish, the associator for the antisymmet-
ric product would be totally antisymmetric and hence had to vanish
because of the Jacobi identity. We therefore require that the associa-
tor of the antisymmetric product in A is nonvanishing. Since C0 is as
a vector space isomorphic to A⊗B, we find the relation

[b3, b2, b1] = λ[[b3, b2, b1]] (13)

for some λ ∈ R.
Finally, we determine the symmetric product in C0, under the

assumption that the associator relation (13) holds within C. By the
independence of the embeddings we have

(ab)b′ = a(bb′) and a(a′b) = (aa′)b.

We now compute (ab)(a′b′). We have by the definition of the associ-
ator

(ab)(a′b′) = ((ab)a′)b′ − [ab, a′, b] .
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We apply (9) twice and obtain

((ab)a′)b′ = (a′(ab))b′ = ((aa′)b)b′ = (aa′)(bb′) .

Thus, due to the relation (13) between the associators,

[ab, a′, b′] = λ[[ab, b′], a′] = λ[a[b, b′], a′] = λ[a, a′][b, b′] .

We therefore arrive at the formula for the symmetric product

(ab)(a′b′) = (aa′)(bb′)− λ[a, a′][b, b′] . (14)

We conclude that C0 is also closed under the symmetric product.
An embedding of A and B can be constructed if both satisfy (13)

with the same λ. Let A⊗B be the tensor product of the vector spaces
A and B. We introduce a symmetric product

(a⊗ b) ◦ (a′ ⊗ b′) = aa′ ⊗ bb′ − λ[a, a′]⊗ [b, b′]

and an antisymmetric product

[a⊗ b, a′ ⊗ b′] = [a, a′]⊗ bb′ + aa′ ⊗ [b, b′]

and obtain a q-algebra A ⊗λ B together with maps α : A → A ⊗ B,
a 7→ a⊗1, β : B → A⊗B, b 7→ 1⊗ b which satisfy the condition of
an independent embedding. Moreover, also the associators inA⊗λB
satisfy the associator relation (13).

We arrive at the following theorem:
Theorem 3.1. Let A,B be q-algebras with nontrivial associators for the anti-
symmetric products. Then an embedding as independent subsystems exists
if and only if the associators in A and in B are related by (13) with the same
λ. Moreover, given any such embedding (α, β) : A×B → C where C also
satisfies (13), there is a unique injective homomorphism γ : A ⊗λ B → C

with γ(a⊗ b) = α(a) ◦ β(b), a ∈ A, b ∈ B.
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Proof. Assume that an independent embedding exists. Then, from
(12), we conclude the relation (13) forB. The argument forA follows
analogously. If, on the other side, (13) holds for both A and B, we
can construct A ⊗λ B as an example for an independent embedding.
Now let (α, β) : A × B → C be any independent embedding. The
map γ given in the Theorem is by definion a linear monomorphism
and preserves the unit. From (14) and (10) we then conclude that
also both products are preserved, hence γ is a monomorphism of q-
algebras.

4. The operator product

Let A be a q-algebra which satisfies the associator equality for some
λ ∈ R. We distinguish three cases:

λ = 0 : In this case the ◦-product of A is associative, and we are in
the situation of classical physics.

λ < 0 : For λ < 0 we can introduce in A an associative noncommu-
tative product by

a • b = a ◦ b+
√

|λ|[a, b] .

The ◦ product is then 1
2 times the anticommutator, and it is

easy to see that also the condition (1) for Jordan algebras
is fulfilled. If A is finite dimensional, the positivity condi-
tion (2) cannot be fulfilled for associative algebras (Braun
and Koecher, 1966). It is likely that this remains true in the
infinite dimensional case, but existent results use additional
input, in particular the existence of a norm. See (McCrimmon,
2004) for an overview.
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λ > 0 : For λ > 0 we define a product in the complexification A⊗C
of A as in (7) with ℏ = 2

√
λ and an antilinear involution

(a⊗ z)∗ = a⊗ z .

A is then the self-adjoint subspace of the complex associative
involutive algebra A ⊗ C, hence we obtain the well known
structure of quantum theory.
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