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Abstract
A recognizable topological model construction shows that any con-
sistent principles of classical set theory, including the validity of the 
law of the excluded third, together with a standard class theory, do 
not suffice to demonstrate the general validity of the law of the ex-
cluded third. This result calls into question the classical mathema-
tician’s ability to offer solid justifications for the logical principles 
he or she favors.
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1. Introduction

In his (1972, 152–153), Kreisel underscored the distinction be-
tween set validity and class validity, and pointed out that, un-

der metatheoretic conditions not unusual, the two notions may 
pull apart extensionally. As will be proved in a moment, it is no 
paradox to assert that all the classical set-theoretic mathematics in 
the world, with it the set validity of the unrestricted law of the ex-
cluded third [TND], plus a class theory with Full Comprehension, 
if consistent, do not suffice to demonstrate that even the proposi-
tional version of the excluded third principle is class valid.

Definition 1 ([propositional] law of the excluded third [TND]) 
The (propositional) law of the excluded third is the formula

p ∨¬p,

for p any propositional variable.
Take any domain of sets the classical mathematician 

chooses and no matter what (consistent) mathematics he or she 
discovers for that domain, it will be impossible, putting to work 
all relevant theorems and techniques, to show that TND is valid 
universally over the domain, even in the presence of a standard 
class theory. More specifically,

one can adopt the classical mathematics, if consistent, taken to 
hold true over any structure S for sets – including TND for S-and 
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yet be unable to deduce, from that mathematics plus Full Com-
prehension for classes, that TND governs all the classes over S.

Therefore, the presumptive ruling assumptions of classi-
cal mathematics cannot convince a latter-day intuitionist that, 
at work in mathematics, there are precisely two truth-values, 
True and False, an assertion tantamount to the validity of the 
excluded third.

The proof of this fact enlists the aid of a topological model 
construction in the venerable tradition of Tarski and Scott, for 
which construction no originality is here claimed. Nor is there 
any shattering novelty in the theorem proved thereby. However, 
there is a moral to be extracted from that theorem and from the 
constructions looming large in its proof, a moral concerning jus-
tifications of deduction. The moral in question is twofold. First, 
it is mistaken to suppose that individual logical principles have 
some vague manner of epistemic primitivity that prohibits their 
general validity being proven without begging the question. 
This is widely believed, at least among philosophers, despite 
the plain fact that the validity, of either the general, the class, or 
the set variety is defined in terms of strictly mathematical state-
ments that prima facie cry out for proof or disproof. This notion 
is a close relative to the false idea that there is “nothing to logic,” 
that there is something (deeply?) basic or obvious or (weasel 
word) ‘potentially obvious’ (Quine, 1970, p. 82) about the prop-
ositional and first-order logical truths, that there is nothing sub-
stantial from which the validity of individual truths of logic can 
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be (or even need be) proven, as if the class of solutions to a nu-
merical problem equivalent to the halting problem always has 
‘obvious’ criteria for membership.

The second moral is that the unbiased question of the va-
lidity of even propositional logical schemes can be a significant 
one mathematically. Cognoscenti already know that, when for-
mulated with a little care, the axioms of Zermelo-Fraenkel [ZF] 
set theory do not suffice to prove the set validity of the law of 
the excluded third, if that validity is not assumed from the out-
set. However, once the Axiom of Choice, even for varieties of fi-
nite sets, is added to ZF, a proof of TND’s set validity – a proof 
perfectly adequate from every epistemological standpoint – be-
comes immediate; it incorporates a charming little argument due 
to Radu Diaconescu (Diaconescu, 1975), later rediscovered by 
Goodman and Myhill (Goodman and Myhill, 1978) and (Bee-
son, 1985, p. 163). Indeed, attempts by classically-minded math-
ematicians to deduce the validity of excluded third not set-theo-
retically but generally will fall short – as this essay demonstrates 
– but the shortfall, I maintain, is neither plain nor superficial. To 
deduce a validity statement in a non-circular fashion can be a se-
rious mathematical undertaking, and shortfalls in or limits upon 
such deductions can present substantial mathematical problems, 
with interesting solutions (McCarty, 2018).

This take on logical validity, a true one, looms large among 
the insights of the traditional intuitionists L.E.J. Brouwer and 
his one-time student Arend Heyting. In the latter’s masterwork 
(Heyting, 1956), we find
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Logic is not the ground on which I stand. How could it be? It 
would in turn need a foundation. … This is the case for every log-
ical theorem: it is but a mathematical theorem of extreme gener-
ality; that is to say, logic is a part of mathematics, and can by no 
means serve as a foundation for it (Heyting, 1956, p. 6).

2. Metatheoretic definitions

Notions constituent to the concept of validity are defined as fol-
lows.

Definitions 2
1. (replacing condition) A replacing condition is a formula 

𝜙(x, X, a) in the language of second-order set theory fea-
turing perhaps first-order variables, first-order parame-
ters a, as well perhaps as second-order variables and pa-
rameters.

2. (interpretation) An interpretation of a propositional for-
mula is the result of replacing uniformly each of its vari-
ables throughout by some replacing condition.

3. (universal closure) A universal closure of an interpreta-
tion Φ(x, X, a) is the statement that results by prefixing 
the interpretation with universal quantifiers, restricted to 
a particular domain or unrestricted, e.g.,

∀x∀X. Φ(x, X, a)
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 so that all free variables in it are bound and the resulting 
expression closed.

4. (generally valid) A formula of propositional logic is gen-
erally valid just in case every universal closure of every 
interpretation of it is true.

Both set validity and class validity, defined as below, are 
natural restrictions on the notion of general validity. If a formula 
is generally valid, then it is both set and class valid.

Definitions 3
Let S be any model of first-order set theory, with, perhaps 

attached to it, a collection of classes over S as well.

1. (replacing set condition) A replacing set condition is a re-
placing condition that is first-order, all its variables range 
over set members of S, all its parameters name sets in S, 
and set membership is its sole primitive predicate.

2. (set interpretation) A set interpretation (over S) of a prop-
ositional formula is an interpretation of it in which all re-
placing conditions are set conditions.

3. (set valid) A propositional formula is set valid whenever, 
given any model S, every universal closure – quantifiers 
restricted to set members of S – of every set interpreta-
tion of the formula over S obtains.

4. (replacing class condition) A replacing class condition is 
a replacing condition that is first-order or second-order, 
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all its first-order variables range over S, all its first-or-
der parameters name sets in S, its second-order variables 
range over classes over S, its second-order parameters 
names classes over S, while set and class membership 
are its sole primitive predicates.

5. (class interpretation) A class interpretation (over S) of 
a propositional formula is an interpretation of it in which 
all replacing conditions are class conditions.

6. (class valid) A propositional formula is class valid when-
ever, given any model S, every universal closure, its sec-
ond-order variables restricted to classes over S, of every 
class interpretation over S obtains.

Proposition 1 Every set replacing condition is a replacing class 
condition. ■
Proposition 2 Every set interpretation is a class interpretation. ■
Proposition 3 Every generally valid formula is class valid. 
Every class valid formula is set valid. ■

For the sake of the present essay, we adopt classical set-the-
oretic mathematics – including the general validity of the law of 
the excluded third – as ambient metatheory. As stated, the final 
goal is to demonstrate that, even under these generous assump-
tions, classical set and a recognizable class theory are insuffi-
cient to afford conclusive mathematical evidence for the class 
validity – a fortiori general validity – of its own presumptive 
logical principles. Needless to say, no proprietary intuitionis-
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tic theorem, such as the Uniformity Principle (Troelstra and van 
Dalen, 1988, p. 234) or Brouwer’s Continuity Theorem (Tro-
elstra and van Dalen, 1988, p. 307) is here presupposed. These 
two, among others, each implies at once the invalidity of TND.

3. A topological model

For decades, it has been common to fancy that all the facts of 
classical mathematics are encodable as a collection 𝒞 of sen-
tences in the language of standard first-order ZF set theory, 
deemed to hold good over the intuitive universe V of cumulative 
sets. We adopt this large assumption – that all of classical math-
ematics can rightly be rendered in the pared-down language of 
ZF set theory, ready to be captured deductively from extensions 
of the ZF axioms – strictly for the sake of the current exercise. 
We do not believe it; other people believe it. (One could avoid it 
by adopting in its stead the much weaker proviso that all classi-
cal theorems are representable as a consistent collection of for-
mulae in some single, many-sorted, first-order language.) On 
that assumption, a classical mathematician’s version of “all the 
mathematics in the world” includes any statements expressible 
in first-order set-theoretic terms, among them the standard first-
order axioms for ZF plus large cardinal hypotheses, if desired. 
Hence, we are sure that “all the mathematics in the world” of 𝒞 
provides the simple and obvious means for proving that classi-
cal formal first-order logic is sound over the relevant universe 
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of sets, and the less simple or obvious means for proving model 
completeness, i.e., that every classically consistent set of first-
order formulae has a Tarskian model.

We also assume throughout that paraconsistent mathemati-
cians will never have their way, and that 𝒞 is consistent in clas-
sical first-order logic. By model completeness, therefore, there 
is a model ℳ of 𝒞 with domain |ℳ|. Henceforth, lower case let-
ters a, b, and the like from the start of the Roman alphabet are 
parameters for elements of |ℳ|. With the aid of a few more def-
initions, ℳ can be enlarged to a universe that includes not only 
(internal) sets but also classes over |ℳ|, and provides a model of 
the set theory from ℳ plus a full, impredicative, second-order 
class theory. Set and class validity of propositional formulae are 
then definable with respect to ℳ.

Definition 4 (Sierpinski topology and space) Treated classically, 
the topology 𝜏 that yields Sierpinski space on the discrete set 
{0,1} has as its open sets these three:

∅,{1}, and {0,1}

From here on out, ‘⊥’ stands for ∅ and ‘⊤’ for {0,1}. Cap-
ital Roman letters from the end of the alphabet such as U, V, W 
range over open sets of 𝜏. As is familiar, 𝜏 is closed under the 
familiar Heyting operations:

1. finite intersection ⋂,
2. arbitrary union ⋃,
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3. Heyting implication V ⇒ W, that is ⋃{U 𝜀𝜏: (U∩V)⊆W}, 
for V, W 𝜀𝜏,

4. Heyting complementation ~U, which maps U 𝜀𝜏 into the 
𝜏-interior of the relative complement of U in {0,1}, and

5. Heyting intersection ⋀, which takes any collection Ui of 
𝜏-open sets into the 𝜏-interior of ⋂iUi.

Definitions 5
1. ([topological-valued] class) A (topological-valued) class 

over ℳ is a function A total over |ℳ| yielding outputs in 𝜏.  
The collection of all these (topological-valued) classes 
over ℳ is denoted ‘|C(ℳ)|.’

2. ([topological-valued] set) For a in |ℳ|, the (topological-
valued) set â over ℳ is the class over ℳ such that, for 
any b in |ℳ|, â(b)= ⊤ if ℳ ⊧ b 𝜀 a, and = ⊥, otherwise.

Let capital Roman letters from the beginning of the alpha-
bet range over topological-valued classes.

The model ℳ is assumed to be a model of set theory, hence 
|ℳ| is a set itself. The collection |C(ℳ)| of all topological-valued 
classes over ℳ consists of all and only the functions from |ℳ| 
into the three-membered set 𝜏. Therefore, it is also a set. Hence, 
when we speak of ‘classes’ internal to C(ℳ) or of ‘topological-
valued classes,’ we are not referring to classes absolutely, but 
only relative to ℳ. Some of these internal classes, e.g., the de-
notation of the Russell class abstract, are internally proper – they 
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are not internal sets. In fact, every topological-valued set over 
ℳ is also a topological-valued class:

Proposition 4 Every topological-valued set over ℳ is also a to-
pological-valued class in |C(ℳ)|.
Proof: By definition. ■

Henceforth, when working with |ℳ| and its extension 
|C(ℳ)|, we speak simply of sets and classes, respectively, from 
|C(ℳ)|, less the qualifiers ‘topological-valued’ or ’internal.’

Definitions 6 Let ℒ be a standard second-order language for ZF 
with variables over sets and classes in which

1. first-order variables range over sets from |C(ℳ)| , while
2. second-order variables range over classes from |C(ℳ)|, 

and
3. the atomic formulae are of two varieties: x 𝜀 y and y 𝜀 X.

Let ℒ(ℳ) be ℒ with parameters for sets and classes from 
|C(ℳ)|.

Definition 7 (the topological model C(ℳ)) The topological 
model C(ℳ) is the function λ𝜙.⟦𝜙⟧ mapping (closed) sentences 
of ℒ(ℳ) into 𝜏 satisfying the familiar recursive clauses intro-
duced in (Tarski, 1938) and elaborated in (Scott, 1968).
for 𝑎 and b in |ℳ|, ⟦â 𝜀 b̂ ⟧ = b̂  (a),
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for 𝑎 in |ℳ| and A a class, ⟦â𝜀A⟧ = A(𝑎),
⟦(𝜙 ∧ 𝜓)⟧ = ⟦𝜙⟧ ∩ ⟦𝜓⟧,
⟦(𝜙 ∨ 𝜓)⟧ = ⟦𝜙⟧ ∪ ⟦𝜓⟧,
⟦(𝜙→𝜓)⟧ = ⟦𝜙⟧ ⇒ ⟦𝜓⟧,
⟦¬𝜙⟧ = ∾ ⟦𝜙⟧,
⟦∃x. 𝜙(x)⟧ = ⋃𝑎𝜀∣ℳ∣⟦𝜙(â)⟧,
⟦∀x . 𝜙(x)⟧ = ⋀𝑎𝜀∣ℳ∣⟦𝜙(â)⟧,
⟦∃X. 𝜙(X)⟧ = ⋃A𝜀∣C(ℳ)∣⟦𝜙(A)⟧, and
⟦∀X. 𝜙(X)⟧ = ⋀A𝜀∣C(ℳ)∣⟦𝜙(A)⟧.

4. Satisfaction, soundness, and class theory

Definitions 8
1. (satisfaction) The topological model C(ℳ) satisfies a pa-

rameterized sentence 𝜙 of ℒ(ℳ), in symbols C(ℳ)⊧𝜙, 
whenever ⟦𝜙⟧ = ⊤.

2. (formal derivability) ‘⊢’ stands for formal derivability 
over ℒ or ℒ(ℳ) specified by the rules of Heyting’s for-
mal intuitionistic first-order logic, as in (Troelstra and 
van Dalen 1988, p. 35ff).

Proposition 5 (soundness) If 𝜙⊢ 𝜓 and C(ℳ)⊧𝜙, then C(ℳ) ⊧ 𝜓. 

Proof: (sketch) With Gentzen’s natural deduction formulation 
of intuitionistic first-order logic, the proof is straightforward by 
induction on derivations. ■
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Detailed proofs of such foundational results as soundness 
for Boolean-valued and topological models are available from 
(Rasiowa and Sikorski, 1963; Bell, 1977; and Grayson, 1979).

Definition 9 (abstract class theory) Abstract class theory is ax-
iomatized in ℒ or ℒ(ℳ) by the general principle of impredica-
tive comprehension Com: for any formula 𝜙(y) of ℒ(ℳ) with 
free variables other than X,

∃X.∀y (y 𝜀 X ↔ 𝜙(y)).

By adopting Com, so formulated, we mean to allow com-
prehension as well for class-relations of arbitrary arities.

Proposition 6 C(ℳ)⊧ Com.
Proof: Since |C(ℳ)| is defined to include all functions from |ℳ| 
into 𝜏, it will include the function A mapping each and every 
𝑎𝜀|ℳ| into ⟦𝜙(â)⟧. Therefore,

C(ℳ)⊧ ∀y (y 𝜀 A ↔ 𝜙(y)). ■

Because |C(ℳ)| satisfies Com, the classes of |C(ℳ)| form 
a Heyting algebra under ∩, ⋃, and relative complementation 
of classes. The principle Com, which is impredicative, is more 
reminiscent of Kelley-Morse set theory (Monk, 1969) than of 
Gödel-Bernays. Cf. (Fraenkel and Bar-Hillel, 1958, p. 112).
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5. Two technical lemmas

The first technical lemma simply eases our way; similar lemmas 
hold for Boolean-valued models. Vide (Bell, 1977).

Lemma 1 For any sentences 𝜙 and 𝜓 of ℒ(ℳ),

⟦(𝜙 → 𝜓)⟧= ⊤
if and only if

⟦𝜙⟧ ⊆ ⟦𝜓⟧.

Proof: Let x be an arbitrary element of the carrier {0,1} under-
lying Sierpinski space. First, assume that

⟦(𝜙 → 𝜓)⟧= ⊤

and that x 𝜀 ⟦𝜙⟧. By the definition of ⟦(𝜙 → 𝜓)⟧,

x 𝜀 ⋃{U 𝜀 𝜏 : (U ∩ ⟦𝜙⟧) ⊆ ⟦𝜓⟧}.

Hence, there is a U 𝜀 𝜏 such that x 𝜀 U and

U ∩ ⟦𝜙⟧ ⊆ ⟦𝜓⟧.

By assumption, x 𝜀 ⟦𝜙⟧. Therefore, x 𝜀 ⟦𝜓⟧. Since x was arbi-
trary, it holds generally that
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⟦𝜙⟧ ⊆ ⟦𝜓⟧.

Conversely, assume that ⟦𝜙⟧ ⊆ ⟦𝜓⟧. It follows that, for any  
U 𝜀 𝜏,

U ∩ ⟦𝜙⟧ ⊆ ⟦𝜓⟧.

Therefore, by definition of the ⇒ operation,
(⟦𝜙⟧ ⇒ ⟦𝜓⟧) = ⟦(𝜙 → 𝜓)⟧ = ⊤. ■

Now in view is the principal lemma governing the semantic 
relation between the original model ℳ of first-order set theory 
– satisfying “all the mathematics in the world” – and the topo-
logical model C(ℳ) for set theory with classes under full com-
prehension Com. Such a relation is reminiscent of the fact that, 
over Scott’s topological model for analysis, elementary arithme-
tic is absolute (Scott, 1968).

Lemma 2 For each strictly first-order sentence 𝜙(â) of ℒ(ℳ) 
with all parameters â referring to sets of |C(ℳ)|,

Proof: (By induction on 𝜙(â) using classical metamathematics)

(i) For 𝜙 atomic, by definition.
(ii) If ℳ ⊧ (𝜙∧ 𝜓), then ℳ ⊧𝜙 and ℳ ⊧𝜓. By the inductive 
hypothesis,

⊤ if ℳ ⊧ϕ(a)

⊥ otherwise.
⟦ϕ(â)⟧ ={
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⟦𝜙⟧ = ⊤ = ⟦𝜓⟧.
Therefore,

⟦𝜙 ∧ 𝜓⟧ = ⊤.

On the other hand, assume that ℳ⊭(𝜙∧𝜓). Without loss of gen-
erality, we can assume that ℳ ⊧𝜙. Then, ℳ ⊭𝜓 and, by induc-
tion, ⟦𝜓⟧ = ⊥ as well as

⟦(𝜙∧𝜓)⟧ = ⊥.

(iii) If ℳ ⊧ (𝜙∨ 𝜓), then ℳ⊧𝜙 or ℳ ⊧𝜓. By the inductive 
hypothesis, if ℳ ⊧𝜙, then

⟦𝜙⟧ = ⟦(𝜙∨𝜓)⟧ = ⊤.

Likewise for the subcase ℳ ⊧𝜓.
On the other hand, if ℳ ⊭(𝜙∨𝜓), then both ℳ ⊭𝜓 and ℳ ⊭𝜓. 
By induction,

⟦𝜙⟧ = ⊥ = ⟦𝜓⟧,

and ⟦(𝜙∨𝜓)⟧ = ⊥.

(iv) Assume that ℳ ⊧(𝜙→𝜓). If ⟦𝜙⟧ = ⊤, then the inductive 
hypothesis gives ℳ ⊧𝜙. In that case, ℳ ⊧𝜓 and ⟦𝜓⟧ = ⊤. Hence, 
⟦(𝜙→𝜓)⟧ = ⊤.
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On the other hand, if ⟦𝜙⟧ = ⊥, then

⟦𝜙⟧ ⊆ ⟦𝜓⟧

and, by Lemma 1,

⟦(𝜙→𝜓)⟧ = ⊤.

Classical reasoning then yields the result.
For the converse, assume that ℳ ⊭(𝜙→𝜓). So, ℳ ⊧𝜙 while  
ℳ ⊭𝜓. By induction, we know that ⟦𝜙⟧ = ⊤ and ⟦𝜓⟧ = ⊥. 
Therefore, ⟦(𝜙→𝜓)⟧ = ⊥, appealing once more to Lemma 1.

(v) From ℳ ⊧¬𝜙 it follows that ℳ ⊭𝜙 and, hence, that  
⟦𝜙⟧ = ⊥ and

⟦¬𝜙⟧ = ⊤.

From ℳ ⊭¬𝜙 it follows classically that ℳ ⊧𝜙. Therefore,  
⟦𝜙⟧ = ⊤ and, by definition of λ𝜙.⟦𝜙⟧ and the inductive hypothesis,

⟦¬𝜙⟧ = ⊥.

(v) ℳ ⊧∃x.𝜙(x) just in case, for some a 𝜀 |ℳ| , ℳ⊧𝜙(a). It 
follows from the inductive hypothesis that there is an â 𝜀 |C(ℳ)| 
such that

⟦𝜙(â)⟧ = ⊤.
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Therefore,
⋃ ⟦𝜙(â)⟧ = ⊤,

and
⟦∃x.𝜙(x) ⟧ = ⊤.

In addition, ℳ ⊭∃x.𝜙(x) just in case, for all a 𝜀 |ℳ|, ℳ ⊭𝜙(a). 
It follows that, for all 𝑎 𝜀 ∣ℳ∣,

⟦𝜙(â) ⟧ = ⊥ .

Therefore, ⟦∃x.𝜙(x) ⟧ = ⊥.

(vii) Lastly, ℳ ⊧∀x.𝜙(x) just in case, for all 𝑎 𝜀∣ℳ∣, ℳ ⊧𝜙(𝑎). 
Hence,

∀𝑎 𝜀 ∣ℳ∣ ⟦𝜙(â)⟧ =⊤.

So, ⋂𝑎𝜀∣ℳ∣ ⟦𝜙(â) ⟧ = ⊤. Therefore, by definition of λ𝜙.⟦𝜙⟧,

⟦ ∀x.𝜙(x) ⟧ = ⊤.

On the other hand, if ℳ ⊭∀x. 𝜙(x), then (classically speaking) 
there is an a 𝜀 |ℳ| such that ℳ ⊭ 𝜙(a). It follows by the induc-
tive hypothesis that,

∃𝑎𝜀∣ℳ∣ such that ⟦𝜙(â)⟧ = ⊥.

𝑎𝜀∣ℳ∣
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Therefore,
⋂ ⟦ 𝜙(â)⟧ = ⊥,

and

⟦ ∀x 𝜙(x) ⟧ = ⊥. ■

6. Two principal theorems

Theorem 1 The entire mathematics of 𝒞 encoded in the lan-
guage of set theory and holding in ℳ obtains as well in C(ℳ).
Proof: Immediate from Lemma 2. ■

Whatever claims belong in 𝒞 – the axioms of familiar ZF 
set theory most likely, together with the Axiom of Choice or De-
terminacy (Mycielski and Steinhaus, 1962) or whatever other 
set-theoretic principles are desired and consistent with them – 
will hold for the sets in C(ℳ). As assumed previously, the math-
ematics internal to ℳ contains demonstrative means sufficient 
to prove the soundness of classical propositional logic, alterna-
tively, to prove the validity of TND in a more direct fashion. 
Therefore, we see that
Corollary 1 C(ℳ)⊧ TND is set-valid. In other words, “all the 
(classical) mathematics in the world” is consistent with and cer-
tifies that TND is set-valid. ■

It remains only to note that the classical first-order and (in-
tuitionistic) second-order, class-theoretic mathematics internal 

𝑎𝜀∣ℳ∣
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to C(ℳ) do not suffice to prove the class validity, and hence the 
general validity, of the law of the excluded third.

Theorem 2 C(ℳ)⊭ ∀X.∀x(x 𝜀 X ∨ ¬ x 𝜀 X).
Proof: Let A be the class in |C(ℳ)| such that, for any 𝑎𝜀∣ℳ∣, 
A(a)={1}. It is clear that

⟦∀x(x 𝜀 A ∨ ¬ x 𝜀 A)⟧ = {1}.

Indeed, for any class B in |C(ℳ)|,

{1} ⊆ ⟦∀x( x 𝜀 B ∨ ¬x 𝜀 B)⟧,

since for any such B and any â,

{1} ⊆ ⟦(â 𝜀 B ∨ ¬â 𝜀 B)⟧.

So,

⟦∀X∀x(x 𝜀 X ∨ ¬x 𝜀 X)⟧ = {1}.

Therefore,

C(ℳ)⊭∀X.∀x(x 𝜀 X ∨ ¬x 𝜀 X). ■

Corollary 2 C(ℳ)⊭ TND is generally valid. ■
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Corollary 3 “All the mathematics in the world” cannot prove 
that TND is generally valid.
Proof: Classical set-theoretic mathematics (the collection of 
first-order statements in 𝒞), which includes the set validity of 
TND, as well as a full impredicative class theory satisfying 
Comp are consistent with the failure of the general validity of 
TND. ■

Full separation for sets by classes, as in Kelley-Morse the-
ory (Monk, 1969),

∀X∀y ∃z∀x(x 𝜀 z ↔ (x 𝜀 X ∧ x 𝜀 y)),

does not hold within C(ℳ). Of course, because truth in C(ℳ) 
agrees with that in ℳ for all first-order conditions, separation 
holds for all predicative or first-order abstractors in ℒ(ℳ). Such 
restricted versions of separation or Bernays’s Axiom of Subclasses 
(Fraenkel and Bar-Hillel, 1958, p. 114) will already be familiar to 
researchers in constructive set and type theory. Cf. (Aczel, 1978). 
Similar remarks apply to the Replacement Scheme or Bernays’s 
Axiom of Substitution (Fraenkel and Bar-Hillel, 1958, p. 114).

7. Going one better

Let σ be the topology determined by the ≤-upward closed sets of 
natural numbers under their canonical ordering ≤. Define from 
structure ℳ the model C(ℳ) as above, but with σ in place of 
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the Sierpinski space topology τ. Proofs of the preceding proposi-
tions, lemmas, and theorems all go through, so that C(ℳ) satis-
fies the classical mathematics presupposed at the outset, together 
with the set validity of TND, all holding in ℳ. This time, the law 
of the excluded third not only fails of general validity on classes 
in C(ℳ), but the negation of the class validity statement obtains.

Theorem 3 C(ℳ)⊧ ¬∀X∀x (x 𝜀 X ∨ ¬x 𝜀 X) .
Proof: Let ℕ be the set of natural numbers. Check that, with σ 
replacing τ in the construction of C(ℳ),

⟦∀X∀x(x 𝜀 X ∨ ¬x 𝜀 X)⟧ = ⊥.

To see this, note that, for the upward-closed, open set  
n ↑ ={m 𝜀 ℕ : n ≤ m}, and class A such that, for all a 𝜀 |ℳ|, 
A(a)=n ↑,

⟦(â 𝜀 A ∨ ¬â 𝜀 A)⟧ = n ↑. ■

Corollary 4 “All the mathematics in the world” plus an impre-
dicative intuitionistic class theory is consistent with ¬∀X∀x  
(x 𝜀 X ∨ ¬x 𝜀 X), hence, with the statement that the general va-
lidity of TND is false outright. ■

A die-hard classical mathematician cannot escape the force 
of these arguments by stomping his or her foot and insisting that 
classical mathematics must be encoded in language of a second-
order (Shapiro, 1991), rather than first-order, set theory, that is, 
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in a theory of sets and classes such as Kelly-Morse or Gödel-
Bernays. It is now clear that even the second-order classical 
mathematician cannot prove the law of the excluded third to be 
generally valid, since it remains consistent with all the second-
order mathematics in the world, if it is consistent, to assume that 
the law of the excluded third fails over hyperclasses, in other 
words, a further collection of third-order classes that are them-
selves collections with members that are the original, possibly 
‘Henkinized’ (Henkin, 1950) classes and sets.
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