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THE EXISTENCE OF SINGULARITIES AND

THE ORIGIN OF SPACE-TIME

Methods of noncommutative geometry are applied to deal with
singular space-times in general relativity. Such space-times are
modeled by noncommutative von Neumann algebras of random
operators. Even the strongest singularities turn out to be prob-
abilistically irrelevant. Only when one goes to the usual (com-
mutative) regime, via a suitable transition process, space-time
emerges and singularities become significant.

1. INTRODUCTION

There is a general feeling that the future theory of quantum grav-
ity will eliminate singularities from the physical image of the world.
This widespread opinion contributes to the fact that to the majority
of cosmologists and astrophysicists the singularity problem seems to
be now less important than it seemed to be several years ago. It is
tacitly assumed that there are only two possibilities: either the “final
theory” will be singularity free, or not, and the latter possibility is
less and less popular. However, the history of physics teaches us that
a truly generalized theory can contain, as special cases, possibilities
that previously seemed to be mutually exclusive. I will show that this
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is indeed the case when the singularity problem is treated in a truly
generalized setting.

In the classical approach, singularities were regarded as elements
of space-time boundaries rather than as “internal points” of space-
time [2, 5, 15]. Various space-time boundaries were constructed (g-
boundary, b-boundary, conformal and causal boundaries...) with the
view of taming singularities, i.e., making them tractable from the
mathematical point of view. An alternative approach could be to look
for new mathematical tools and to face the problem in its full math-
ematical complexity. It is noncommutative geometry that has been
created with the view of dealing with “highly singular” situations in
mathematics [3], and in this note I will apply its methods to meet the
challenge of strong singularities in cosmology (for technical details
see [7]).

In Section 2, some key mathematical tools to deal with singulari-
ties are reminded, and with their help the truly malicious character of
strong singularities is displayed. A noncommutative method, as it is
applied to the singularity problem, is briefly presented in Section 3,
and this method is put to work in Section 4. It is shown that space-
time with strong (the so-called malicious) singularities is modeled by
a von Neumann algebra of random operators which makes singulari-
ties probabilistically irrelevant. A physical interpretation of this result
is sketched in Section 5.

2. MALICIOUS SINGULARITIES

There are reasons to believe that it is Schmidt’s b-boundary con-
struction [14] and its later history that best reveal the complex math-
ematical structure of strong curvature singularities. We first briefly
recall this construction. Let us consider a space-time (M, g), and
πM : E → M a fibre bundle of linear frames over M with the Lorentz
group G = SO(3, 1) as its structural group. Levi-Civita connection on
M determines the family of Riemann metrics on E. We select one of
them, and notice that the further construction does not depend on this
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choice. With the help of the chosen metric we determine the distance
function on E and construct the Cauchy completion Ē of E. It can be
shown that the right action of the group G on E prolongs to that of Ē.
This allows us to define the quotient space M̄ = Ē/G. We call M̄ the
b-completion of space-time M. M is open and dense in M̄. Finally,
we define the b-boundary of space-time M as ∂bM = M̄ − M. Each
g-incomplete geodesic and each incomplete timelike curve of bounded
acceleration (that can be interpreted as the history of a physical body)
in (M, g) determines a point in ∂bM.

After its publishing, Schmidt’s construction was regarded “ele-
gant” [5, p. 276] and “most promising” [15, p. 152]. However, when
Bosshard [1] and Johnson [12] computed b-boundaries for the closed
Friedman world model and for the Schwarzschild solution, it turned
out that the b-boundaries of these two space-times consisted of a sin-
gle point that was not Hausdorff separated from the rest of space-time.
This was especially disastrous for the Friedman closed model since
this meant that the initial and final singularities form (topologically)
the same boundary point. There were several attempts to cure the sit-
uation, but none of them was fully successful (for a review see [4]),
and Schmidt’s construction went slowly in oblivion.

However, instead of rejecting Schmidt’s construction it is inter-
esting to clarify the situation. This can be done with the help of
slightly generalized but otherwise standard methods of differential
geometry and topology [11]. It turns out that it is an equivalence
relation ρ ⊂ E × E, defined by p1ρp2 ⇔ there exists g ∈ G such
that p2 = p1g, that is responsible for the pathological behavior. Let
x0 be a b-boundary point, and p0 ∈ π−1

M̄
. We say that the singularity

remains in a close contact with equivalence classes [p] of all p ∈ E,
if p0 ∈ cl[p] for every p ∈ E. If this is the case, the singularity is
called malicious. We have demonstrated that both the initial and final
singularities in the closed Friedman model, and the central singularity
in the Schawrzschild solution are malicious singularities. In this case,
the fiber over the singularity reduces to a single point [11]. This is
why Schmidt’s construction does not work well.



38 Michał Heller

3. NONCOMMUTATIVE APPROACH

To translate Schmidt’s construction into the noncommutative lan-
guage we apply the standard method of making a space noncommu-
tative [3, pp. 86–87]. We consider the fibre bundle πM : E → M, as
above. The structural group G acts on E, E × G → E. This allows
us naturally to define the groupoid Γ = E × G which is isomorphic
to
⋃

x Ex × Ex where Ex is the fiber over x ∈ M. We further de-
fine the noncommutative algebra A = C∞c (Γ,C) of smooth, compactly
supported, complex valued functions on Γ with the convolution as
multiplication [8, 13]

(a1 ∗ a2)(p1, p2) =
∫

Ex

a1(p1, p3)a2(p3, p2) dp3

for a ∈ A, p1, p2, p3 ∈ Ex, x = πM(p3). The algebra A has the
vanishing center, but we define the “outer center” of this algebra as
Z = π∗M(C∞(M)) which acts on the algebra A, α : Z ×A → A, in the
following way

α( f , a)(p1, p2) = f (p1)a(p1, p2),

a ∈ A, f ∈ Z. It is clear that the geometry of space-time M is en-
coded in Z (in [7] we have shown that Z can be restricted to bounded
functions on M with no loss of generality).

Let us now define Ē = E ∪ {p0} and assume that the point p0

remains in close contact with all equivalence classes of the relation ρ.
We extend this relation to ρ̄ ⊂ Ē × Ē by assuming (p0, p0) ∈ ρ̄. Let us
denote Ē/ρ̄ by M̄. We now have the groupoid Γ̄ = Γ ∪ {(p0, p0)} over
Ē.

We now construct the algebra Ā on the groupoid Γ̄. We first define
the algebra A⊕ Z with the multiplication

(a + f ) ∗ (b + g) = a ∗ b + α( f , b) + α(g, a) + f · g,

then we extend this algebra to Γ̄ (functions from A are extended
through zero, i.e., we put ā(p0, p0) = 0, and ā|Γ = a). Finally, we set
Ā = A⊕ Z̄.
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In the presence of a malicious singularity the algebra Z reduces to
Z̄ consisting only of constant functions. This corresponds to the fact
that space-time M with at least one malicious singularity collapses to a
single point. However, in agreement with the philosophy of noncom-
mutative geometry, all information about space-time with malicious
singularities is stored in the algebra Ā.

4. IRRELEVANCE OF MALICIOUS SINGULARITIES

Let us define the representation, the so-called regular representa-
tion, of the algebra A in the Hilbert space Hp = L2(Γp) where Γp

denotes all elements of Γ with p as a second element of the pair. The
representation is of the form

(πp(a)ψ)(p1, p) =
∫

Ex

a(p1, p2)ψ(p2, p) dp2

for a ∈ A, ψ ∈ Hp, p, p1, p2 ∈ Ex with x = πM(p). For f̄ = λ =

const ∈ Z̄ we have

(πp( f̄ )ψ)(p1, p) = λψ(p1, p).

It comes as a surprise that every a ∈ A generates a random oper-
ator ra = (πp(a))p∈E acting on a collection of Hilbert spaces {Hp}p∈E.

An operator valued function E ∋ p 7→ r(p) ∈ B(H)p is called a
random operator if it satisfies the following conditions [3, pp. 50–53]:

(1) If ξp, ηp ∈ Hp then the function E → C, given by E ∋ p 7→
(r(p)ξp, ηp), a ∈ A, is measurable with respect to the usual
manifold measure on E.

(2) The operator r is bounded, i.e., ||r|| < ∞, ||r|| = ess sup||r(p)||,
where “ess sup” denotes supremum modulo zero measure sets
(the so-called essential supremum).

Operators ra = (πp(a))p∈E , satisfy these conditions.
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We define the algebraM0 of equivalence classes (modulo equality
almost everywhere) of random operators ra, a ∈ A, and complete it to
the von Neumann algebra M = M′′0 where M′′0 denotes the double
commutant of M0. The algebra M is called von Neumann algebra of
the groupoid Γ. Probabilistic aspects of the algebra M are studied in
[9] (it should be remembered that the theory of noncommutative von
Neumann algebras is regarded as the measure theory of noncommu-
tative spaces [3, pp. 45–48]).

We repeat the same with the algebra Ā, and define the algebra M̄0

consisting of random operators of the type rā with ā ∈ Ā where ā =
a + λ. From the von Neumann theorem on the double commutant we
have M′′0 =M. It can be easily seen that also M̄′′0 =M. This follows
from the fact that random operators are equivalence classes of the
equivalence relation that is defined by equality “almost everywhere”.
As the consequence we have

M′′0 = M̄′′0 =M.

This is an important equality. Let us notice thatM0 is the algebra
of random operators before the singular point has been attached, and
M̄0 is the algebra of random operators after the singular point has
been attached. If we complete these two algebras to the von Neumann
algebra, we obtain the same von Neumann algebraM. This means that
from the probabilistic point of view the singular point is irrelevant.

5. INTERPRETATION

Our main result can be described in the following way. If we decide
to encode information about space-time M with at least one malicious
singularity in the algebra Ā = C∞c ((Γ̄,C), ∗) then it turns out that the
regular representation of this algebra on a family of Hilbert spaces
is an algebra of random operators which makes the initial singularity
probabilistically insignificant. This result, obtained in a mathematically
rigorous way, suggests an interesting physical interpretation.
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Let us notice that, in the present work, singularities were treated
in a purely classical way; so far quantum effects were not even men-
tioned. However, algebras of bounded operators on Hilbert spaces and,
in particular, von Neumann algebras, are typically quantum mathemat-
ical structures. It looks, therefore, as if malicious singularities “knew
something” about the quantum aspect of reality. In fact, basing on
this suggestion and on this mathematical structure, a model has been
constructed unifying general relativity with quantum mechanics [6, 8,
9, 10]. If we agree that noncommutative geometry will somehow be
engaged into the future quantum gravity theory then the problem is
not of whether singularities exist on the fundamental level or not, but
rather of whether they are relevant or not.

Usually, when the origin of the universe is discussed, two mu-
tually exclusive possibilities are tacitly assumed: either the universe
had a singular beginning, or not. However, as we have demonstrated,
the third answer is possible: on the fundamental level even malicious
singularities are irrelevant. In this approach, probability, albeit in a
generalized (noncommutative) sense, is an inherent aspect of the fun-
damental level, and in this probability dominated regime singularities
are irrelevant. Only when one goes to the macroscopic level, space-
time appears and the singularities acquire their significance.

This transition can be made mathematically precise. It is clear
that the information about space-time is contained in the outer center
Z, and to go from the noncommutative regime to the usual space-
time geometry one must somehow restrict the algebra A to Z. In
[10] we have shown that this can be done with the help of a suitable
“averaging” of elements of A. As we remember, in the presence of a
malicious singularity the outer center Z reduces to constant functions,
and space-time with its singular boundary collapses to a single point.
To avoid this degeneracy one must use sheaf of algebras rather than a
single algebra (for details see [11]).

We can speculate that since noncommutative algebras are nonlocal
(the concepts of a point and its neighbourhood are meaningless), the
fundamental level is aspatial and atemporal (on this level there is no
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space and no time in the usual sense). The universe simply is, and
is immersed in an overwhelming probabilistic aspect. Only from the
point of view of the macroscopic observer the question of whether it
had a singular beginning in its finite past and will have a singular end
in its finite future, acquires its dramatic meaning.
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