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what are the limits of 
mathematical explanation?

interview with charles mccarty  
by piotr Urbańczyk

Piotr Urbańczyk: Our guest is Professor Charles McCarty. He 
does research in the areas of philosophy of mathematics and phi-
losophy of logic, especially intuitionism, as well as foundations 
of mathematics and early analytical philosophy. He has written 
about the history of mathematics and logic, especially of the late 
19th and early 20th centuries. Professor McCarty, I would like to 
ask you, “What is an explanation in mathematics?” 

Charles McCarty: I worry that this question – which is raised 
more frequently of late – may be prompted by an obsession with 
those results of mathematics that enter into scientific explana-
tions of physical phenomena, even though those applied results 
may not be characteristic of mathematics overall. For all I know, 
persistent questions about the explanatory character of proofs are 
critical to legitimizing those philosophies of mathematics that 
ape modish philosophies of the physical sciences. Also, I worry 
that the question betrays a lazy desire to make all mathematical 
facts as simple as possible in presentation, as if we were spoiled 
children who must have things spelled out in the most painfully 
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elementary terms. That said, there is a plain difference, a felt dif-
ference at least, between mathematical demonstrations that we 
find revelatory, that give us a sensation of “Aha! Now I know 
what’s going on!” and mathematical demonstrations that may not 
engender this sensation, although both kinds of demonstration  
can be perfectly cogent and serve other, more important ends 
in mathematics. Of course, an annoying problem is to lay au-
thoritatively definitory, and if not definitory, at least expli-
cative hands on that strongly felt but elusive difference. The 
‘Aha’ sensation in mathematics and its various philosophies 
may prove as resistant to theory as the ‘Ho ho’ sensations in 
the aesthetics of comedy. 

A close associate of questions about mathematical expla-
nation is the blithe assumption that the goal of mathematical 
proof is exhausted in producing conviction of some kind, at-
taining acquiescence to the conclusion(s) of the proof. While 
a great deal of mathematical proof does serve the purpose of 
gaining acquiescence, an equally great deal does not serve that 
purpose at all. A proof – in the language of Principia Mathe-
matica (Russell, Whitehead, 1910–1913), for instance – that 
1 plus 1 equals 2 certainly has not got conviction in its con-
clusion as a principal aim, getting readers to agree that 1 plus 
1 equals 2 on the basis of a prior grasp of axioms governing 
higher-order propositional functions specified predicatively. 
Rather, the provision of such a proof is confirmation (in part) 
that the system of Principia Mathematica and the logicism it 
implements are sufficient unto some ordinary claims of grade-
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school mathematics. The proof forges connections between 
recognizably mathematical ideas and (at times wildly) phil-
osophical ones, and helps to justify, in its application to the 
latter, the title ‘foundational.’ (Here and throughout, I use the 
word ‘proof’ to cover epistemic, intensional constructs from 
a spectrum running from strictly discursive argumentation 
through demonstrations, constructions, calculations, mathe-
matical thought-experiments, to glossed diagrams.) 

Consider a (seemingly nonexplanatory) proof from strictly 
Dedekindian principles that, when you multiply the integer -1 
by itself, you get 1 back. In this, you imagine an integer repre-
sented by (or identified with?) a pair of natural numbers under 
a primitive recursive equivalence relation. Furthermore, you im-
agine multiplication defined primitive recursively in terms of 
summed cross-products of the (natural number) components of 
those pairs. Then, if you run through the calculation that -1 times 
-1 is 1, following these definitional lines, you see, “Yes – so rep-
resented – -1 times -1 equals 1.” However, this proof, ingenious 
as it may be, hardly prompts the “Aha!” sensation. After having 
read such a proof, few would exclaim, “Wow! Now I see why 
-1 times -1 equals 1.” Rather, Dedekind’s calculation serves the 
narrowly proximal purpose of showing that the pairwise defi-
nition of integers and the primitive recursive definition of mul-
tiplication for those integers suffice for deriving a certain ele-
mentary fact about the integers from similarly elementary facts 
governing natural numbers. Ultimately, and much more impor-
tantly, it helps anoint and crown the Dedekindian vision of nat-
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ural numbers in terms of calculation by recursion – shocking as 
it may have seemed originally – as foundational and deeply so. 
(Do we want to say that, thanks to proofs like this, the Dede-
kindian, calculative natural numbers won out over the old-time 
natural numbers, those tied to numeration and mensuration?) 

A more explanatory proof of this simple result of inte-
ger arithmetic may be a manner of kinesthetic (I would say) 
demonstration in which you exploit the fact that multiplica-
tion by -1 takes hold of the ordinary number line, and swings it 
through 180 degrees, so bringing it back onto itself – but with 
positive and negative half-rays reversed. Then, it is patently 
obvious that multiplying by -1 twice gives you 1 in return. 
In multiplying by -1 two times, all you do is spin the number 
line around once, and then one more time to undo the rever-
sal. This kind of proof might well produce the “Aha!” sensa-
tion – “Oh, yes! Okay, that’s why it works.” This reminds us 
that the word ‘demonstration’ shares 90% of its etymological 
DNA with both ‘monstrance’ and ‘monster,’ so joining it to 
‘display’ and ‘outlandish.’ 

I would not wish the contrastive characters of the two proofs 
just mentioned, the calculative and the kinesthetic, to suggest to 
readers that I am conceiving a contemporary felt distinction be-
tween explanatory and non-explanatory proofs either as just an-
other battle in the ancient war between algebra and geometry 
or as a further guerrilla skirmish fought between the competing 
mathematical tribes Felix Klein once labeled ‘intuitionists’ and 
‘formalists.’ Such historical antecedents that today’s questions 
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regarding mathematical explanations may boast are a matter for 
detailed, future investigation (Klein, 1911). 

Do repeated questions about proofs as explanations mask 
issues more important to the foundations of mathematics, once 
that subject is freed from subjugation to philosophy of mathe-
matics? The foundational issue I have in mind treats of ‘proof-
cores,’ their existence and explication. What are proof-cores? 
From time to time, they have been called ‘proof-constructions’ 
or ‘proof-ideas,’ even ‘calculi.’ (Wittgenstein used ‘Kalkül’ in 
notebooks that he kept after returning to Cambridge in 1929. 
Then, he started – we would now say – to extract from discur-
sive, inductive proofs recursive procedures as proof-cores. At 
that time, he had been poring over [Skolem, 1923]). Speaking 
metaphorically but with a hope for accuracy, I say that a proof-
core is the dynamical engine or principle of a proof such that, 
once you have a proof-core fully to hand, you truly understand 
the mathematics of the proof, which includes, but is hardly ex-
hausted by, any corollaries derivable from it. The dynamical, 
engine analogy is apposite: the word dynamis (featuring at least 
120 times in the Greek New Testament) denotes a great power, 
verging on the miraculous, for performing marvelous feats of 
demonstration. 

I hasten to remark that I do not assimilate matters relating 
to proof-cores, their existence and isolation, automatically to the 
intellectually distinct matters surrounding explanations. A forti-
ori I do not identify – in advance of much-needed investigation 
– a proof-core with that feature, if anything, that makes a proof 
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explanatory. In principle, the potential reach of a proof-core is 
global (as the following example suggests) passing far beyond 
the formally deductive bounds on any single theory. A proof-
core need not unify – to employ current jargon – but it does 
reveal and showcase a widespread mathematical phenomenon 
such as deductive incompleteness. 

For example, take Gödel’s published proof (1931) of his 
First Incompleteness Theorem. What lies at its core? A linked 
pair of great breakthroughs: the Arithmetic Fixed-Point Theorem 
and the Numeralwise Definability of Computable Functions. Both 
these ‘Theorem’ titles grant mathematical credentials to interlaced 
methods, not to isolated statements merely. Once you grasp them 
as dual proofcores, you can – for one thing – start generating in-
completeness results for yourself, you can apply these results to 
other systems or theories, you can see how to extend them to arith-
metized predicates other than ‘is not provable.’ The little gem by 
Tarski, Mostowski, and Robinson, Undecidable theories (1953) 
exemplify these processes of extracting, generating, applying, and 
extending the original Incompleteness Theorem. 

There are many more examples in logic. What is at the proof-
core of a pedestrian completeness theorem? It may be the pro-
cesses lodged at the intellectual heart of the Prime Ideal Theo-
rem or the Ultrafilter Extension Theorem: every nontrivial filter in 
a boolean algebra extends to an ultrafilter. (In intuitionism, this is 
the validity of the Law of Testability.) As you recognize this idea 
to be the dynamics behind many completeness theorems, you can 
start milling out completeness theorems more or less easily for 
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domains other than – for example – conventional first-order logic. 
Also, you see and can assess those fascinating circumstances in 
which you cannot make completeness theorems go through, such 
as a fairly standard completeness theorem for intuitionistic formal 
logic within a strictly intuitionistic metatheory. 

Now, how to isolate and characterize proof-cores? Here, 
we are talking about constructions in an extended sense of the 
term (perhaps ‘nonconstructive constructions’?) or algorithms 
in a similarly extended sense. They are not algorithms à la Tu-
ring-Church-Gödel, that is, not general recursive procedures. 
There are times when the application of a proof-core requires 
great ingenuity and creativity – even good luck. In general, the 
business is in no way automatic or programmable and may take 
decades of hard mathematical work, by a squad of mathemati-
cians, to work out plainly. So, grasping a proof-core is having to 
hand a procedure akin to an algorithm for reproducing a proof 
(not copying its syntax down blindly), adapting it to new cir-
cumstances, applying it more widely, thereby seeing hitherto in-
visible links among disparate topics. 

There is a proof-core to the usual proofs of the Bolzano-
Weierstrass Theorem – that among real numbers in a closed, 
bounded interval, if an infinite number have been selected, then 
there is an accumulation point. The operative proof-core might 
be represented by a standard proof, via ‘divide and choose,’ of 
König’s Lemma. By such means, if I am looking up through an 
unbounded binary tree, then I can ‘trace out’ an infinite path run-
ning through it. As Kleene proved in Recursive functions and in-
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tuitionistic mathematics (1952), this manner of tracing out may 
not be general recursive, even were the original tree primitive 
recursive. 

What kinds of generalized algorithms are proof-cores? 
Could we have a fixed notation for representing proof-cores? 
Can we classify proof-cores? In reply, I put two suggestions for-
ward: interested scholars should move away from the philoso-
phy of mathematics to engage with the foundations of mathe-
matics – an area in which we employ all the mathematical tools 
at our disposal to solve the problems of mathematics and its un-
derpinnings delivered to us by philosophy – rather than pursuing 
approaches to those questions via strictly dialectical or discur-
sive means. The questions about proof-cores are questions in the 
foundations of mathematics. Second, I recommend the extrac-
tion and regimentation of proof-cores. Close attention to the re-
verse mathematics of Simpson (1999) may yield more concrete 
and detailed ideas on how to achieve this. 

PU: You have mentioned Gödel’s Incompleteness Theorems 
and, in this context, I would like to ask you, “Are there any lim-
its to mathematical explanation? Can we find places in mathe-
matical phenomena that are so complicated in their natures that 
we would not be able to explain them?” 

CM: That is an interesting question, unless that interest be-
speaks an unhealthy fascination in predicting the future. If the 
area that I sketched out above constitutes a genuine and fruit-
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ful approach to understanding what mathematics is via the ex-
traction of proof-cores, if the generalized notion of algorithm 
needed for that is bounded above and permanently in true com-
plexity, then the answer to your question should be “Yes.” Of 
course, when I say ‘bounded above in true complexity,’ I mean 
bounded in a complexity measure akin to but not identical with 
familiar arithmetical complexity, analytical complexity, or lev-
els of set-theoretic definability. The relevant complexity meas-
ure cannot be the same as any of these since, for example, arith-
metical complexity does not coincide at all with intelligibility or 
ease of understanding. The truth predicate for arithmetic, which 
is non-arithmetic, is likely to be graspable far more readily than 
any arithmetic set that is complete Π0

3,946. 
If the generalized algorithms that are proof-cores are bounded 

in true complexity in a meaningful fashion, there will be math-
ematical phenomena that will never be open to exploration by 
proof; we will never exert that measure of epistemic control over 
what goes on in those complex mathematical areas. Gödel seemed 
to believe (Gödel, 1961, p. 385) that there is no limit of this sort 
at all. To Gödel’s thinking, set theorists are going to explore ever 
further reaches of the cumulative hierarchy and, as the explora-
tions proceed, their mathematical capacities, which are potentially 
infinite, will continue to expand without bound. Hence, Gödel’s 
answer to your question about limits would presumably be, “No.” 
However, I do not wish to overlook two alternative possibilities 
that are yet to be mentioned: first, that some proofs might be ‘one-
offs,’ having no discernible cores in my sense. In that case, the 



128

Charles McCarty, Piotr Urbańczyk

Za
ga

dn
ie

ni
a 

Fi
lo

zo
fic

zn
e 

w
 N

au
ce

 | 
LX

  •
  2

01
6

reach of those proofs may extend beyond that of proof-cores. 
Second, there may be methods leading to mathematical knowl-
edge that are not proofs as currently conceived. As an intuition-
ist, I cannot, of course, insist right now that the correct answer to 
your question about limits is, “Either ‘Yes’ or ‘No’.” 

PU: Why? 

CM: The Law of Excluded Third is invalid. 

PU: But Hilbert said that we will eventually know everything in 
mathematics – that there is no “Ignorabimus” in mathematics. 

CM: He did indeed say that. In fact, he did more than say it. 
He wanted to shout it from the rooftops. He did so, in effect, in 
his 1900 Problems Lecture (Hilbert, 1902) as well as in his last 
lecture at Königsberg (1930). The latter he closed by referring 
to the ridiculous or foolish [‘töricht’ in his German] “Ignorabi-
mus;” he denied flatly that there is “Ignorabimus” in mathemat-
ics: “Es gibt kein ‘Ignorabimus.’” It seems to me that Hilbert’s 
utterance was among the last manifestations of an optimistic 
epistemic attitude to pure mathematics that he championed, an 
attitude more common in the 19th Century. (Study of the writ-
ings of 19th-Century mathematician/philosopher Paul du Bois-
Reymond, such as his (1882), reveals that it was hardly univer-
sal.) On Hilbert’s view, there are no permitted limits to our pure 
mathematical cognition; the reach of such mathematical know-
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ledge will go on extending and extending so that any statable 
mathematical problem will receive a clearly accessible mathe-
matical solution (which can, under certain circumstances, take 
the form of an impossibility result), but maybe only after a long 
time. Hilbert would be more than surprised were he to come 
back today and discover that we now live in an age thorough ly 
skeptical about logic and mathematics, with much more talk, 
both informed and otherwise, about barriers to mathematical 
knowledge, limits on mathematical cognition, bounds on our in-
tellectual abilities. A lot of that talk is just silly, to be cast adrift 
in the same boat as such solecisms as ‘Human minds are finite.’ 
This skepticism and its succubus pessimism are not called up 
among us entirely by popular scribbling about Gödel’s Incom-
pleteness Theorems and the Unsolvability of the Entscheidungs-
problem. We live in a long-term bull market for superstition, 
anti-intellectualism, lapsed confidence in rational powers, crip-
pling self-doubt. 

A more thorough examination of the gulf between potential 
and actual infinity will allow us to grasp more plainly and assess 
more honestly the true extent of our mathematical gifts. Human 
cognition in mathematics expands (and contracts) along paths 
that are potentially rather than either recursively or abstractly in-
finite. The extensional course of mathematical knowledge traced 
by its change cannot be a general recursive path. When it comes 
to human goings-on or thoughts or theories, the relevant infin-
ity often exhibits a potential or modal character. More specif-
ically, given any theorem in an ordinary logical calculus, it is 
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possible that I can produce yet a further, new, and more compli-
cated theorem in the same calculus. It hardly follows from this 
that I might produce a strictly infinite number of theorems or 
that it is ‘in my competence’ to do so. The ‘possibly,’ ‘may,’ and 
‘might’ at work at this point are too often cast out of discussion 
by scholars when they pontificate about intellectual capacities. 
Famously, in his Language and mind (1968), Chomsky offers 
one version of a fallacious modal argument for the conclusion 
that human linguistic capacity is strictly infinite. He reasons in-
validly from such a premise as, “For every sentence we grasp, 
it is possible for us to recognize as grammatical another longer 
sentence whose grammatical structure we can also grasp,” to the 
conclusion, “There is a strictly infinite number of distinct sen-
tences all of which we can recognize as grammatical and assess 
for grammaticality.” Somehow, the ‘it is possible’ in the prem-
ise disappears into the gap between premise and conclusion. You 
find a kindred error in Dedekind’s argument for the existence of 
actually infinite systems in his (1888). In effect, Dedekind ar-
gues, “For every thought I entertain, I can produce and enter-
tain yet another more complicated and different thought. Also, 
I have what you might call a null thought that is not an output of 
this facility for producing yet more thoughts. Hence, I have an 
infinity of thoughts at my disposal.” Again, Dedekind seems to 
have forgotten about the ‘can’ within his main premise. I insist 
that the ‘can’ remain. We must study sets that are defined either 
modally or intuitionistically: modally – talking about possibili-
ties – or intuitionistically – by exploiting double negations. As 
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you know, double negation is not cancellable intuitionistically. 
One can pursue a detailed mathematical investigation of either 
kind of sets. There are clear relations between them given by 
the Gödel theorem, and its extensions, governing translations 
between modal logics like S4 and corresponding intuitionistic 
calculi (Gödel, 1933). 

PU: Could you tell us what is the difference between proofs in 
intuitionistic and classical mathematics? 

CM: I am not sure that – in and of themselves – there need be 
much difference apart from the obvious and superficial. First, 
intuitionists do not count as valid various inferences mistak-
enly deemed correct by classical mathematicians. Second, intu-
itionists who follow Brouwer employ mathematical principles 
that conventional mathematicians take to be false. If you look 
at standard articulations of intuitionistic proofs, if you were to 
write down – in first-order logic, say – the steps in an intuition-
istic proof, that is, just the steps in the usual, formalized way, 
you see that the passages from one statement to the next will all 
be acceptable to the classical mathematician. What may prove 
unacceptable to that mathematician is the initial assumptions 
on which many intuitionistic proofs depend. In part, intuition-
ism is characterized by such assumptions. These the intuition-
ist finds intuitive and in future may be able to prove, but are re-
jected roundly by classical mathematicians. They are principles 
such as the intuitionistic form of Church’s Thesis – every total 
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natural number function into the natural numbers is a general 
recursive function. They are principles such as the Principle of 
Uniformity, that is, in any power set, if we label its elements us-
ing natural numbers, there must be some number that labels all 
the elements. They are principles such as Brouwer’s Principle 
for numbers: that every total function from Baire space into it-
self is continuous. 

I want to emphasize that there are axioms of set theory and 
number theory, analysis and algebra that the classical mathe-
matician and the intuitionistic mathematician will agree about 
completely: agree about their meanings, agree about their truth, 
agree about many of their consequences. They include the state-
ments that any set of sets has a union, any set of sets has an in-
tersection, that, given any class function restricted to a set, there 
will be a set containing all its outputs (the Axiom of Collection). 
There is an infinite collection, there is an empty set, the Rus-
sell class is not a set. All these are points of firm agreement be-
tween an intuitionistic set theorist and her classical colleagues, 
and form the bread-and-butter of the Bishopstyle constructivist 
(Bishop, 1967). 

However, this agreement does not mean that – and these 
are important, too – our most treasured self-descriptions are go-
ing to be the same or even so completely understandable to one 
another that we can sympathize about mathematics. One uses 
the word ‘understand’ in many ways. You can say, “Ah, I fi-
nally understand what Joe’s doing” to mean “Ah, now I can see 
what’s motivating him. I can show some sympathy for his ef-
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forts.” That is the sort of understanding that I mean here. Classi-
cal mathematicians who are platonists often describe their math-
ematics or the doing of their mathematics in ways with which 
I cannot sympathize. They exclaim, “Oh, mathematics is the re-
cording of the details of a rock-hard, crystalline, clear, beauti-
ful domain that is far away somewhere. I’m scanning it through 
my noetic telescope, and recording what I see of the flora and 
fauna,” as in Hardy (1940). Gosh, that does not sound to me like 
a fun mathematics, I have to tell you; I guess I am not much of 
an astronomer or botanist. To me, this astronomical vision of the 
mathematical enterprise does not seem worth the candle. Do-
ing intuitionistic mathematics is not well compared with look-
ing; it is far more like full, conscious, bodily activity. Robin 
Collingwood, in his Principles of art (1938), described the cre-
ative work of the artist as “an imaginary experience of total ac-
tivity.” This powerful thought about arts like painting applies 
equally well to creative mathematics. 

When you describe intuitionistic mathematics in ways by 
which I can recognize it as my own art, ways in which I might 
sympathize, it seems more akin to sculpting than to astronomy. 
In mathematics, I work through a field with my mental fingers, 
as if I were a blind man playing with clay. I touch a mathematical 
substance much closer, more tangible, and plastic than some sort 
of faraway crystal. Its stuff is malleable and bendable, respond-
ing more readily to my will. The strong impression of malleabil-
ity may be due to the fact, insufficiently emphasized, that intui-
tionistic mathematics is the mathematics of a far greater range 
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of mathematical circumstances than is classical mathematics. 
The intuitionist deals happily with circumstances that simply do 
not exist classically. One can prove classically (or better, think 
to prove) that they do not exist. For instance, in classical math-
ematics, except for singleton sets, there are no sets that stand in 
one-to-one correspondence with their full function spaces. In 
other words, the only standard, classical models of Church’s un-
typed lambda calculus or, if you will, of the von Neumann no-
tion of computing, are singleton sets. Intuitionistically, there is 
no problem in producing standard models of the type-free cal-
culus of varied sizes. So, the classical mathematician is obliged 
to made do here with a strictly second-best, with a relatively 
ponderous mock-up of these situations, where you add topo-
logical values or you restrict yourself by considering, not ar-
bitrary functions, but Scott-continuous functions only. That is 
is perfectly fine in that it is consistent with classical set theory, 
but it is a register of the sad fact that true models are, in this 
important case, unavailable even to the extra-terrestrial tele-
scopes of the conventional mathematicians. 

PU: But there are also some classical axioms and theorems that 
are unacceptable for intuitionists, for example, the full Axiom 
of Choice. 

CM: Yes, they are unacceptable because they are demonstra-
bly false. The full Axiom of Choice implies the Law of Ex-
cluded Third, as Scott and Diaconescu proved. (See Beeson, 



135

What are the limits of mathematical explanation?

Zagadnienia Filozoficzne w
 N

auce | LX
  •  2016

1985, p. 163). Therefore, the full Axiom of Choice is an antithe-
orem in Brouwer’s intuitionistic mathematics. 

This does not mean that an intuitionist cannot apply cer-
tain restricted axioms of choice. You might have an axiom of 
choice over the natural numbers, for example. If I have a collec-
tion of inhabited sets indexed by natural numbers – let us imag-
ine them as sacks filled with elements, one hanging above each 
natural number – then such a restricted axiom tells us that there 
is a function on the natural numbers that selects an element out 
of each one of those sacks. There are other possible restrictions. 
For instance, intuitionists can consistently adopt the Presenta-
tion Axiom of Choice. The full Axiom of Choice says, “Every 
inhabited set of inhabited sets has a choice function.” The Pres-
entation Axiom of Choice – due to Peter Aczel (1978) – says, 
“Give me any set X, I can find a set Y of which X is a quotient 
such that an Axiom of Choice holds when restricted to Y.” An-
other way of putting it is to assert that every set can be covered 
with a type, if you think of types as sets over which a suitably 
restricted axiom of choice holds. This axiom holds in intuition-
istic circumstances, such as the Kleene realizability universe, 
where the full Axiom of Choice patently does not. 

PU: Thank you very much. 

CM: You are most welcome. 
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